{VERSION 5 0 "IBM INTEL NT" "5.0" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 1 0 0 0 0 1 }{CSTYLE "2D Math" -1 2 "Times" 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 1 }{CSTYLE "2D Comment" 2 18 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 } {CSTYLE "" -1 256 "" 1 14 0 0 0 0 0 1 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 257 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 258 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 259 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 260 "" 0 14 0 0 0 0 0 1 0 0 0 0 0 0 0 1 } {CSTYLE "" -1 261 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 262 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 263 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 264 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 265 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 } {CSTYLE "" -1 266 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 267 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 268 "" 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 }{CSTYLE "" -1 269 "" 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 }{CSTYLE "" -1 270 "" 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 } {CSTYLE "" -1 271 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 272 "" 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 }{CSTYLE "" -1 273 "" 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 }{CSTYLE "" -1 274 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 275 "" 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 } {CSTYLE "" -1 276 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 277 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 278 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 279 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 280 "" 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 } {CSTYLE "" -1 281 "" 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 }{CSTYLE "" -1 282 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 283 "" 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 }{CSTYLE "" -1 284 "" 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 }{CSTYLE "" -1 285 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 } {CSTYLE "" -1 286 "" 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 }{CSTYLE "" -1 287 "" 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 }{CSTYLE "" -1 288 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 289 "" 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 }{CSTYLE "" -1 290 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 } {CSTYLE "" -1 291 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 292 "" 1 14 0 0 0 0 0 1 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 293 "" 1 14 0 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 294 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 }{PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Heading 1 " 0 3 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 1 0 0 0 0 0 0 0 1 }1 0 0 0 8 4 0 0 0 0 0 0 -1 0 }{PSTYLE "Maple Plot" 0 13 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 256 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 257 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 258 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 259 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 260 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }} {SECT 0 {EXCHG {PARA 260 "" 0 "" {TEXT -1 0 "" }}{PARA 256 "" 0 "" {TEXT 291 1 " " }{TEXT 292 27 "An\341lisis II - Matem\341tica 3" } {TEXT -1 1 "\n" }}{PARA 259 "" 0 "" {TEXT 293 15 "TALLER DE MAPLE" }} {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 258 "" 0 "" {TEXT -1 14 " LABORA TORIO 3" }}{PARA 257 "" 0 "" {TEXT -1 1 " " }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 49 "En este laboratorio representaremos gr\341ficamente " } {TEXT 258 26 "superficies parametrizadas" }{TEXT -1 2 ". " }}{PARA 0 " " 0 "" {TEXT -1 0 "" }}}{SECT 1 {PARA 3 "" 0 "" {TEXT -1 35 "Superfici es parametrizadas: gr\341fico" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }} {PARA 0 "" 0 "" {TEXT -1 0 "" }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 8 "restart;" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 30 "with(plots):\nwith(p lottools):\n" }}}{EXCHG {PARA 0 "" 0 "" {TEXT 256 31 "Phi(u,v)=(x(u,v) ,y(u,v),z(u,v))" }{TEXT -1 39 " es una superficie parametrizada donde \+ " }{TEXT 260 1 "u" }{TEXT -1 1 " " }{TEXT 261 8 "= u1..u2" }{TEXT -1 4 " y " }{TEXT 258 3 "v =" }{TEXT 256 7 " v1..v2" }{TEXT 259 1 "." }} }{PARA 0 "" 0 "" {TEXT 256 0 "" }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 69 "Phi:=(u,v)->[u, 0.5*sin(v), .6*v];\n\nu1:=-1;\nu2:=1;\n\nv1:=0; \nv2:=2*Pi;\n" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 41 "A continuaci\363 n se calculan el gr\341fico de " }{TEXT 262 3 "Phi" }{TEXT -1 14 " y l os bordes." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 79 "sup:=plot3d(P hi(u,v),u=u1..u2,v=v1..v2,scaling=constrained,style=patchnogrid):\n" } }{PARA 0 "> " 0 "" {MPLTEXT 1 0 337 "borde1:=spacecurve(Phi(u1,v),v=v1 ..v2,scaling=constrained,color=green,thickness=4):\n\nborde2:=spacecur ve(Phi(u2,v),v=v1..v2,scaling=constrained,color=blue,thickness=3):\n\n borde3:=spacecurve(Phi(u,v1),u=u1..u2,scaling=constrained,color=red,th ickness=4):\n\nborde4:=spacecurve(Phi(u,v2),u=u1..u2,scaling=constrain ed,color=yellow,thickness=3):\n" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 45 "display3d([sup,borde1,borde2,borde3,borde4]);" }}{PARA 13 "" 0 "" {TEXT -1 0 "" }}{PARA 13 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{SECT 1 {PARA 3 "" 0 "" {TEXT -1 29 "Vectores tangentes y normales" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{EXCHG {PARA 0 "" 0 "" {TEXT -1 32 "A partir de la parametriazaci\363n " }{TEXT 264 3 "Phi" }{TEXT -1 15 " definid a antes" }{TEXT 263 2 ", " }{TEXT -1 74 "se graficar\341 la imagen del segmento que une dos puntos dados del dominio " }{TEXT 266 1 "(" } {TEXT 256 7 "punto0 " }{TEXT -1 1 "y" }{TEXT 257 10 " punto1). " } {TEXT -1 111 "Adem\341s se animar\341 el desplazamiento de los vectore s tangente y normal a la superficie a lo largo de esta curva." }{TEXT 265 2 " \n" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 33 "D\351 dos puntos de ntro del dominio:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 34 "punto0 :=[-1,0]:\npunto1:=[1,2*Pi]:\n" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 12 "nframes:=23:" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 265 "i:='i':\n \npunto:=(punto0[1]+(punto1[1]-punto0[1])*i/nframes,\n punto0[ 2]+(punto1[2]-punto0[2])*i/nframes):\n\ncurva:=spacecurve(Phi(punto),i =0..nframes,color=yellow,thickness=2):\n\ndu:=unapply(diff(Phi(u,v),u) ,(u,v)):\ndv:=unapply(diff(Phi(u,v),v),(u,v)):\n\ni:=0:\n" }}{PARA 0 " > " 0 "" {MPLTEXT 1 0 136 "tangu:=line(Phi(punto),Phi(punto)+du(punto) ,color=blue,thickness=2):\ntangv:=line(Phi(punto),Phi(punto)+dv(punto) ,color=red,thickness=2):" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 54 "\np:=po intplot3d(Phi(punto),color=black,symbol=circle):" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 174 "\nn:=[du(punto)[2]*dv(punto)[3]-du(punto)[3]*dv(punt o)[2],\n du(punto)[3]*dv(punto)[1]-du(punto)[1]*dv(punto)[3],\n \+ du(punto)[1]*dv(punto)[2]-du(punto)[2]*dv(punto)[1]] :" }}{PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 59 "nor:=line(Phi(punto),Phi(punto)+n,color=black, thickness=2):" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 56 "\n\ncuadro[0]:=dis play3d([sup,p,tangu,tangv,nor,curva]):\n\n" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 82 "for i from 1 to nframes do \n\np:=pointplot3d(Phi(pun to),color=black,symbol=circle):" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 0 " " }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 73 "du:=unapply(diff(Phi(u,v),u),(u ,v));\ndv:=unapply(diff(Phi(u,v),v),(u,v));" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 136 "tangu:=line(Phi(punto),Phi(punto)+du(punto),color=bl ue,thickness=2):\ntangv:=line(Phi(punto),Phi(punto)+dv(punto),color=re d,thickness=2):" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 173 "n:=[du(punto)[2]*dv(punto)[3]-du(punto)[3]*dv(p unto)[2],\n du(punto)[3]*dv(punto)[1]-du(punto)[1]*dv(punto)[3],\n \+ du(punto)[1]*dv(punto)[2]-du(punto)[2]*dv(punto)[1]] :" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 59 "nor:=line(Phi(punto),Phi(punto)+n,color=bla ck,thickness=2):" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}{PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 70 "cuadro[i]:=display3d([sup,p,tangu,tangv,nor,cu rva,cuadro[0]]);\n\nod:\n\n\n" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 76 "di splay3d(seq(cuadro[i],i=0..nframes),insequence=true,\nscaling=constrai ned);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}}{SECT 0 {PARA 3 "" 0 "" {TEXT -1 12 "Ejercitaci\363n" }} {PARA 0 "" 0 "" {TEXT -1 1 "\n" }{TEXT 267 3 "1.-" }{TEXT -1 1 " " } {TEXT 268 0 "" }{TEXT 269 7 "Esfera:" }{TEXT 270 0 "" }{TEXT -1 2 " \+ " }{XPPEDIT 18 0 "Phi(u,v) = [cos(u)*sin(v), sin(u)*sin(v), cos(v)];" "6#/-%$PhiG6$%\"uG%\"vG7%*&-%$cosG6#F'\"\"\"-%$sinG6#F(F.*&-F06#F'F.-F 06#F(F.-F,6#F(" }{TEXT -1 124 ", u = 0..2*Pi, v = 0..Pi.\n\n \+ a) Suponga que orientamos positivamente la esfera con respecto a la no rmal exterior. \277" }{XPPEDIT 18 0 "Phi;" "6#%$PhiG" }{TEXT -1 78 " \+ conserva la orientaci\363n?\n \n b) Grafique s\363lo el hem isferio norte.\n" }}{PARA 0 "" 0 "" {TEXT -1 46 " c) Grafique e l hemisferio occidental.\n" }}{PARA 0 "" 0 "" {TEXT -1 69 " d) \+ Grafique una banda en torno del ecuador.\n \n e) \277" } {XPPEDIT 18 0 "Phi;" "6#%$PhiG" }{TEXT -1 94 " es suave en el polo nor te? Observe el comportamiento de la normal cuando se desplaza desde \+ \n" }{TEXT 256 19 " punto0" }{TEXT -1 16 "=[0,Pi/2] hasta \+ " }{TEXT 257 6 "punto1" }{TEXT -1 9 "=[0, 0].\n" }}{PARA 0 "" 0 "" {TEXT -1 86 " f) D\351 una parametrizaci\363n de la esfera en l a que se preserve la orientaci\363n.\n\n" }{TEXT 285 4 "2.- " }{TEXT 286 5 "Cono:" }{TEXT 287 0 "" }{TEXT -1 2 " " }{XPPEDIT 18 0 "Phi(u,v ) = [u*cos(v), u*sin(v), u];" "6#/-%$PhiG6$%\"uG%\"vG7%*&F'\"\"\"-%$co sG6#F(F+*&F'F+-%$sinG6#F(F+F'" }{TEXT -1 107 " , u = -1..1, v = 0..2 *Pi. \n\n a) D\351 una parametrizaci\363n que invierta la orie ntaci\363n inducida por " }{XPPEDIT 18 0 "Phi;" "6#%$PhiG" }{TEXT -1 100 ".\n\n b) Elija un camino que pase por el v\351rtice del c ono. \277Qu\351 pasa con la normal?\n \n" }{TEXT 271 4 "3.- " }{TEXT 272 5 "Toro:" }{TEXT 273 0 "" }{TEXT -1 2 " " }{XPPEDIT 18 0 " Phi(u,v) = [2*cos(v)+.5*sin(u)*cos(v), 2*sin(v)+.5*sin(v)*sin(u), .5*c os(u)];" "6#/-%$PhiG6$%\"uG%\"vG7%,&*&\"\"#\"\"\"-%$cosG6#F(F-F-*(-%&F loatG6$\"\"&!\"\"F--%$sinG6#F'F--F/6#F(F-F-,&*&F,F--F86#F(F-F-*(-F36$F 5F6F--F86#F(F--F86#F'F-F-*&-F36$F5F6F--F/6#F'F-" }{TEXT -1 31 ", u = \+ 0..2*Pi, v = 0..2*Pi.\n\n" }{TEXT 274 4 "4.- " }{TEXT 275 17 "Cinta d e Moebius:" }{TEXT 276 0 "" }{TEXT -1 2 " " }{XPPEDIT 18 0 "Phi(u,v) \+ = [2*cos(u)+v*sin(u/2)*cos(u), 2*sin(u)+v*sin(u/2)*sin(u), v*cos(u/2)] ;" "6#/-%$PhiG6$%\"uG%\"vG7%,&*&\"\"#\"\"\"-%$cosG6#F'F-F-*(F(F--%$sin G6#*&F'F-F,!\"\"F--F/6#F'F-F-,&*&F,F--F36#F'F-F-*(F(F--F36#*&F'F-F,F6F --F36#F'F-F-*&F(F--F/6#*&F'F-F,F6F-" }{TEXT -1 132 ", \+ u = \+ 0..2*Pi, v = -2..2.\n\n a) Considere " }{TEXT 277 6 "punto0" }{TEXT -1 9 "=[0,0] y " }{TEXT 278 6 "punto1" }{TEXT -1 32 "=[Pi,0]. \+ \n\n b) Considere " }{TEXT 256 6 "punto0" }{TEXT -1 9 "=[0,0] y " }{TEXT 257 6 "punto1" }{TEXT -1 87 "=[2*Pi,0]. \n\n c) \277C u\341ntas caras tiene la cinta? \277Es una superficie orientable?\n\n " }{TEXT 279 4 "5.- " }{TEXT 280 10 "Helicoide:" }{TEXT 281 0 "" } {TEXT -1 3 " " }{XPPEDIT 18 0 "Phi(u,v) = [u*cos(v), u*sin(v), v];" "6#/-%$PhiG6$%\"uG%\"vG7%*&F'\"\"\"-%$cosG6#F(F+*&F'F+-%$sinG6#F(F+F( " }{TEXT -1 29 ", u = 0..4, v = 0..3*Pi.\n\n\n" }{TEXT 282 4 "6.- " }{TEXT 283 23 "Gr\341fico de una funci\363n:" }{TEXT 284 0 "" }{TEXT -1 106 " Supondremos que el gr\341fico de una funci\363n esta orienta do positivamente si la normal tiene su coordenada " }{TEXT 294 1 "z" } {TEXT -1 80 " positiva.\n\n a) D\351 una parametrizaci\363n positi va de la gr\341fica de la funci\363n " }{XPPEDIT 18 0 "f(x,y) = (x^2-y ^2)/2;" "6#/-%\"fG6$%\"xG%\"yG*&,&*$F'\"\"#\"\"\"*$F(F,!\"\"F-F,F/" } {TEXT -1 132 " donde x = -1..1 e y = -1..1.\n\n b) D\351 una par ametrizaci\363n que induzca una orientaci\363n negativa en la superfic ie del item a).\n\n" }{TEXT 288 4 "7.- " }{TEXT 289 25 "Superficie de \+ revoluci\363n:" }{TEXT 290 0 "" }{TEXT -1 97 " \n\n a) Parametric e la superficie engendrada al rotar 360\272 alrededor del eje x la gr \341fica de " }{XPPEDIT 18 0 "f(x) = x^2+1;" "6#/-%\"fG6#%\"xG,&*$F'\" \"#\"\"\"F+F+" }{TEXT -1 53 " con x = -1..1.\n\n b) Pruebe con ot ras funciones." }}}}{MARK "0 1 0" 0 }{VIEWOPTS 1 1 0 1 1 1803 1 1 1 1 }{PAGENUMBERS 0 1 2 33 1 1 }