{VERSION 5 0 "IBM INTEL NT" "5.0" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 1 0 0 0 0 1 }{CSTYLE "2D Math" -1 2 "Times" 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 1 }{CSTYLE "2D Comment" 2 18 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 } {CSTYLE "" -1 256 "" 0 14 0 0 0 0 1 0 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 257 "" 1 14 0 0 0 0 0 2 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 258 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 259 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 260 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 } {CSTYLE "" -1 261 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 262 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 263 "" 1 14 0 0 0 0 0 1 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 264 "" 1 14 0 0 0 0 0 0 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 265 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 } {CSTYLE "" -1 266 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 267 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 268 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 269 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 270 "" 1 14 0 0 0 0 0 1 0 0 0 0 0 0 0 1 } {CSTYLE "" -1 272 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 273 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 274 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 275 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 }{PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Maple Plot " 0 13 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 256 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 257 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 258 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 259 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }} {SECT 0 {EXCHG {PARA 256 "" 0 "" {TEXT -1 1 "\n" }{TEXT 270 43 "An\341 lisis I - Matem\341tica 1 - An\341lisis II (C)" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 257 "" 0 "" {TEXT 257 15 "TALLER DE MAPLE" } {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 259 "" 0 "" {TEXT -1 14 " LABORATORIO 4" }}{PARA 258 "" 0 "" {TEXT -1 1 " " }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 183 "En este laboratorio graficaremos \+ distintas rectas y planos tangentes al gr\341fico de una funci\363n r eal de dos variables.\nAntes de comenzar es conveniente que repase las definiciones de " }{TEXT 267 16 "derivada parcial" }{TEXT -1 2 ", " } {TEXT 268 20 "derivada direccional" }{TEXT -1 3 " y " }{TEXT 269 16 "p lano tangente.\n" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 8 "restart: " }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "with(plots):\n" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 49 "Ingresamos una funci\363n diferenciable e n un punto " }{XPPEDIT 18 0 "P = (a, b);" "6#/%\"PG6$%\"aG%\"bG" } {TEXT -1 5 " con " }{TEXT 258 7 "-2 " 0 "" {MPLTEXT 1 0 35 "f:=(x,y)->sin(x*y);\na:=1.2;\nb:=.8;\n" } {TEXT -1 0 "" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 55 "graf:=plot3d(f(x,y) ,x=-2..2,y=-2..2,style=patchnogrid):" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 177 "p:=pointplot3d([a,b,f(a,b)],symbol=circle,color=red,thickness=2 ):\n\nminz:=-1;\nmaxz:=2;\n\ndisplay3d(\{graf,p\},orientation=[157,63] ,view=minz..maxz,axes=framed,\nscaling=constrained);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 30 " \nGraficamos la restricci\363n de " }{TEXT 272 1 "f" }{TEXT -1 28 " a \+ la recta paralela al eje " }{TEXT 273 1 "x" }{TEXT -1 14 " que pasa po r " }{TEXT 260 6 "(a,b)." }{TEXT -1 1 "\n" }}}{EXCHG {PARA 0 "> " 0 " " {MPLTEXT 1 0 69 "gx:=spacecurve([a+x,b,f(a+x,b)],x=-a-2..2-a,color=b lue,thickness=2):\n" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 93 "display3d(\{ graf,p,gx\},orientation=[165,79],view=minz..maxz,axes=framed,\nscaling =constrained);" }}{PARA 13 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 109 "\nGra ficamos la recta tangente a la curva anterior. Para esto calculamos la derivada parcial respecto de x en " }{TEXT 261 5 "(a,b)" }{TEXT -1 2 ".\n" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 19 "fx:=diff(f(x,y),x); " }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 24 "mx:=eval(fx,\{x=a,y=b\});\n" } {TEXT -1 0 "" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 71 "lx:=spacecurve([x,b ,mx*(x-a)+f(a,b)],x=-2..2,color=black,thickness=2):\n" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 95 "display3d(\{graf,p,gx,lx\},orientation=[165,79], view=minz..maxz,axes=framed,scaling=constrained);" }}}{EXCHG {PARA 0 " > " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 51 "\nAg reguemos la recta tangente a la restricci\363n de " }{TEXT 274 1 "f" }{TEXT -1 43 " a la recta paralela al eje y que pasa por " }{TEXT 256 5 "(a,b)" }{TEXT -1 60 ". Para esto calculamos la derivada parcial res pecto de y en " }{TEXT 256 6 "(a,b)." }{TEXT -1 1 "\n" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 69 "gy:=spacecurve([a,b+y,f(a,b+y)],y=- b-2..2-b,color=green,thickness=2):" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 19 "fy:=diff(f(x,y),y);" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 23 "my:=eval (fy,\{x=a,y=b\});" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 70 "ly:=spacecurve ([a,y,my*(y-b)+f(a,b)],y=-2..2,color=black,thickness=2):" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 102 "displa y3d(\{graf,p,gy,ly,gx,lx\},orientation=[-168,48],view=minz..maxz,axes= framed,scaling=constrained);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 40 "mv:=evalf( mx*sqrt(2)/2+my*sqrt(2)/2 );\n" } {TEXT -1 0 "" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 135 "gv:=spacecurve([a+ t*sqrt(2)/2,b+t*sqrt(2)/2,f(a+t*sqrt(2)/2,b+t*sqrt(2)/2)],t=-2-a*sqrt( 2)/2..2-b*sqrt(2)/2,color=yellow,thickness=2):\n" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 93 "lv:=spacecurve([a+t*sqrt(2)/2,b+t*sqrt(2)/2,mv*t+f(a, b)],t=-2..2,\ncolor=black,thickness=2):\n\n" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 107 "display3d([graf,p,gv,lv,gy,ly,gx,lx],orientation=[17 3,47],view=minz..maxz,axes=framed,scaling=constrained);" }}{PARA 13 " " 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 103 "planotangente:=plot3d(f(a,b)+mx*(x-a)+my*(y-b),x=-3+a..3+a,y=-3 +b..3+b,\ncolor=pink,style=patchnogrid):\n" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 115 "display3d([graf,p,lv,ly,lx,planotangente],orientatio n=[170,82],\nview=[-2..2,-2..2,minz..maxz],scaling=constrained);" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> " 0 " " {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }{TEXT 262 0 "" }{TEXT 263 13 "Ejercitaci\363n:" }{TEXT 264 0 "" }{TEXT -1 134 "\n\na) En el ejemplo anterior cambiar el punto P por (0,0).\n \+ \277Qu\351 peculiaridad tienen algunas de las rectas tangentes? \277Es cierto que " }{TEXT 266 18 "en un entorno de P" }{TEXT -1 60 " una re cta tangente necesariamente s\363lo corta al gr\341fico de " }{TEXT 275 1 "f" }{TEXT -1 86 " en P?\n \277C\363mo es el plano tangente? \+ \277Es (0,0) un extremo?\n\nb) Considerar la funci\363n " }{XPPEDIT 18 0 "f(x,y) = x^2+y^2;" "6#/-%\"fG6$%\"xG%\"yG,&*$F'\"\"#\"\"\"*$F(F+ F," }{TEXT -1 210 " , P=(0,0), minz=0 y maxz=2.\n \277C\363mo es el plano tangente? \277Es (0,0) un extremo?\n Probar con otros puntos. Observar que la gr\341fica de la funci\363n est\341 siempre por encim a del plano.\n\nc) Considerar la funci\363n " }{XPPEDIT 18 0 "f(x,y) = x^2-y^2;" "6#/-%\"fG6$%\"xG%\"yG,&*$F'\"\"#\"\"\"*$F(F+!\"\"" }{TEXT -1 150 " , P=(0,0), minz=-2 y maxz=2.\n \277C\363mo es el plano tan gente? \277Es (0,0) un extremo?\n Probar con otros puntos. Observar \+ que la gr\341fica de la funci\363n " }{TEXT 265 25 "en cualquier entor no de P" }{TEXT -1 58 " nunca est\341 totalmente por encima o por deba jo del plano.\n" }}}}{MARK "0 4 0" 14 }{VIEWOPTS 1 1 0 1 1 1803 1 1 1 1 }{PAGENUMBERS 0 1 2 33 1 1 }