{VERSION 5 0 "IBM INTEL NT" "5.0" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 1 0 0 0 0 1 }{CSTYLE "2D Math" -1 2 "Times" 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 1 }{CSTYLE "Hyperlink" -1 17 "" 0 1 0 128 128 1 2 0 1 0 0 0 0 0 0 1 }{CSTYLE "2D Comment" 2 18 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 } {CSTYLE "" -1 256 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 258 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 259 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 260 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 261 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 } {CSTYLE "" -1 262 "Courier" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 }{CSTYLE " " -1 263 "Courier" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 264 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 265 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 266 "Courier" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 267 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 } {CSTYLE "" -1 268 "Courier" 0 1 0 0 0 0 0 2 0 0 0 0 0 0 0 1 }{CSTYLE " " -1 269 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 270 "Courie r" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 271 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 272 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 273 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 274 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 275 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 276 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 277 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 } {CSTYLE "" -1 278 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 279 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 280 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 281 "Courier" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 282 "" 1 14 0 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 283 "" 0 1 0 0 0 0 0 2 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 284 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 285 "" 0 1 0 0 0 0 0 2 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 286 "" 0 1 0 0 0 0 0 2 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 287 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 } {CSTYLE "" -1 288 "" 0 1 0 0 0 0 0 2 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 289 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 290 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 291 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 292 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 } {PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Heading 1" 0 3 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 1 0 0 0 0 0 0 0 1 }1 0 0 0 8 4 0 0 0 0 0 0 -1 0 }{PSTYLE "Maple Output" 0 11 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 3 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE " " 0 256 1 {CSTYLE "" -1 -1 "" 1 14 0 0 0 0 0 1 0 0 0 0 0 0 0 1 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 257 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 258 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 259 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 260 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 261 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 262 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 263 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 264 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 265 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 266 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }} {SECT 0 {EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 266 "" 0 "" {TEXT 282 21 "Geometr\355a Diferencial" }} {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 256 "" 0 "" {TEXT -1 46 "FORMAS \+ DIFERENCIALES Y EL TEOREMA DE FROBENIUS" }{TEXT 256 0 "" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 264 "" 0 "" {TEXT -1 58 "Laboratorio confec cionado por Mirta Iriondo, FaMAF, UNC." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 267 "E n este laboratorio vamos a familiarizarnos con el c\341lculo de formas diferenciales. Lo vamos a aplicar centralmente a controlar si sistema s de formas diferenciales son integrables o no. Para ello usaremos el \+ teorema de Frobenius en la versi\363n de formas diferenciales." }} {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT 258 22 "Teorema \+ de Frobenius: " }{TEXT -1 3 "Sea" }{TEXT 284 1 " " }{TEXT -1 2 "( " } {XPPEDIT 18 0 "omega[p+1];" "6#&%&omegaG6#,&%\"pG\"\"\"F(F(" }{TEXT -1 7 ", ..., " }{XPPEDIT 18 0 "omega[n];" "6#&%&omegaG6#%\"nG" }{TEXT -1 18 ") un sistema de " }{XPPEDIT 18 0 "n-p;" "6#,&%\"nG\"\"\"%\"pG !\"\"" }{TEXT -1 43 " formas diferenciales de grado 1 y clase " } {XPPEDIT 18 0 "C^[1];" "6#)%\"CG7#\"\"\"" }{TEXT -1 20 " en un abierto U de " }{XPPEDIT 18 0 "R^n;" "6#)%\"RG%\"nG" }{TEXT -1 24 ", tal que \+ en cada punto " }{TEXT 259 1 "x" }{TEXT -1 29 " en U el rango del sist ema ( " }{XPPEDIT 18 0 "omega[p+1];" "6#&%&omegaG6#,&%\"pG\"\"\"F(F(" }{TEXT -1 7 ", ..., " }{XPPEDIT 18 0 "omega[n];" "6#&%&omegaG6#%\"nG" }{TEXT -1 14 ") sea igual a " }{XPPEDIT 18 0 "n-p" "6#,&%\"nG\"\"\"%\" pG!\"\"" }{TEXT -1 33 ". Entonces el sistema diferencial" }}{PARA 0 " " 0 "" {TEXT -1 0 "" }}{PARA 257 "" 0 "" {XPPEDIT 18 0 "omega[i] = 0; " "6#/&%&omegaG6#%\"iG\"\"!" }{TEXT -1 10 " ( " }{TEXT 260 11 " p < i < n+1" }{TEXT -1 2 " )" }}{PARA 0 "" 0 "" {TEXT -1 66 "es comple tamente integrable si y s\363lo si las formas diferenciales " }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 258 "" 0 "" {TEXT -1 1 "d" }{XPPEDIT 18 0 "`&^`(omega[i],omega[p+1]);" "6#-%#&^G6$&%&omegaG6#%\"iG&F'6#,&% \"pG\"\"\"F.F." }{TEXT -1 8 " ...... " }{XPPEDIT 18 0 "`&^`(omega[n-1] ,omega[n]);" "6#-%#&^G6$&%&omegaG6#,&%\"nG\"\"\"F+!\"\"&F'6#F*" } {TEXT -1 8 " ( " }{TEXT 261 11 "p < i < n+1" }{TEXT -1 2 " )" }} {PARA 0 "" 0 "" {TEXT -1 24 "son id\351nticamente nulas." }}{PARA 0 " " 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 " " {TEXT -1 41 "Comience colocando el cursor en el signo " }{TEXT 277 3 "(+)" }{TEXT -1 71 " en la secci\363n de abajo y cliquee con el mous e, luego apriete la tecla " }{TEXT 276 5 "Enter" }{TEXT -1 242 " para \+ ejecutar cada comando que aparecer\341 en letras rojas. Si el comando \+ termina con punto y coma, Maple responder\341 con un eco de la terea r ealizada y si el comando termina con dos puntos Maple ejecuta el coman do pero no muestra el resultado." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}} {SECT 1 {PARA 3 "" 0 "" {TEXT -1 14 "Los comandos " }{TEXT 262 1 "d" }{TEXT 283 2 ", " }{TEXT 281 6 "deform" }{TEXT 285 5 ", " }{TEXT 263 2 "&^" }{TEXT 286 1 "," }{TEXT 270 9 " simpform" }{TEXT 268 1 " " }{TEXT -1 1 "y" }{TEXT 267 1 " " }{TEXT 288 1 " " }{TEXT 266 10 "scala rpart" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{EXCHG {PARA 0 "" 0 "" {TEXT -1 54 "Vamos a comenzar limpiando la memoria con el comando " } {HYPERLNK 17 "restart" 2 "restart" "" }{TEXT -1 26 " y cargando el pa quete " }{HYPERLNK 17 "difforms" 2 "difforms" "" }{TEXT -1 2 " " }} }{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 8 "restart:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 15 "with(difforms);" }}{PARA 11 "" 1 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 51 "Declaramos las formas d iferenciales con el comando " }{HYPERLNK 17 "defform" 2 "defform" "" } {TEXT -1 82 " , en este ejemplo son escalares, o sea de grado cero, y \+ definimos con el comando " }{HYPERLNK 17 "alias" 2 "alias" "" }{TEXT -1 18 " las funciones P(" }{TEXT 278 5 "x,y,z" }{TEXT -1 1 ")" } {TEXT 279 2 ", " }{TEXT -1 2 "Q(" }{TEXT 265 5 "x,y,z" }{TEXT -1 6 ") \+ y R(" }{TEXT 280 5 "x,y,z" }{TEXT -1 1 ")" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 33 "defform(x=0,y=0,z=0, P=0,Q=0,R=0);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 40 "alias(P=P( x,y,z),Q=Q(x,y,z),R=R(x,y,z));" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 15 "En la variable " }{TEXT 264 2 "w " }{TEXT -1 45 "guardamos una forma \+ diferencial de grado uno " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 24 "w:=P*d(x)+Q*d(y)+R*d(z);" }}{PARA 11 "" 1 "" {TEXT -1 0 "" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 26 "Para saber si la ecuaci\363n " } {XPPEDIT 18 0 "w = 0;" "6#/%\"wG\"\"!" }{TEXT -1 59 " es completamente integrable haremos el producto exterior " }{XPPEDIT 18 0 "`&^`(d(ome ga),omega);" "6#-%#&^G6$-%\"dG6#%&omegaGF)" }{TEXT -1 34 " y simplific aremos con el comando " }{HYPERLNK 17 "simpform" 2 "simpform" "" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 25 "Omega:=simpform(d(w)&^w);" } }}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 34 "La condici\363n para que la ecuaci\363n " }{XPPEDIT 18 0 "w = 0;" "6#/%\"wG\"\"!" }{TEXT -1 32 " sea completamente integrable e s" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 37 "collect(scalarpart(Ome ga)=0,[P,Q,R]);" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 35 "Observe que he mos usado el comando " }{HYPERLNK 17 "scalarpart" 2 "scalarpart" "" } {TEXT -1 62 " para obtener la parte escalar de esta 3-forma y el com ando " }{HYPERLNK 17 "collect" 2 "collect" "" }{TEXT -1 57 " para jun tar los t\351rminos con P, Q y R respectivamente. " }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 27 "Por lo tanto si definimo s " }{XPPEDIT 18 0 "X = [P, Q, R];" "6#/%\"XG7%%\"PG%\"QG%\"RG" } {TEXT -1 78 ", la condici\363n para que la ecuaci\363n sea completame nte integrable es que rot(" }{TEXT 269 1 "X" }{TEXT -1 19 ") sea ort ogonal a " }{TEXT 271 2 "X." }}}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{SECT 0 {PARA 3 "" 0 "" {TEXT -1 12 "Ejerci taci\363n" }}{PARA 0 "" 0 "" {TEXT -1 24 "1) Considere la 2-forma" }} {PARA 259 "" 0 "" {XPPEDIT 18 0 "omega = x*`&^`(d(y),d(z))-2*z*f(y)*`& ^`(d(x),d(y))+y*f(y)*`&^`(dz,d(x));" "6#/%&omegaG,(*&%\"xG\"\"\"-%#&^G 6$-%\"dG6#%\"yG-F-6#%\"zGF(F(**\"\"#F(F2F(-%\"fG6#F/F(-F*6$-F-6#F'-F-6 #F/F(!\"\"*(F/F(-F66#F/F(-F*6$%#dzG-F-6#F'F(F(" }{TEXT -1 0 "" }} {PARA 0 "" 0 "" {TEXT -1 6 "donde " }{TEXT 287 1 "f" }{TEXT -1 25 " es una aplicaci\363n clase " }{XPPEDIT 18 0 "C^[1]" "6#)%\"CG7#\"\"\"" } {TEXT -1 4 " de " }{TEXT 272 1 "R" }{TEXT -1 5 " en " }{TEXT 273 3 "R " }{TEXT -1 15 "tal que f(1)=1." }}{PARA 0 "" 0 "" {TEXT -1 14 "a) D etermine " }{TEXT 289 1 "f" }{TEXT -1 11 " para que " }{XPPEDIT 18 0 "d(omega) = `&^`(`&^`(d(x),d(y)),d(z));" "6#/-%\"dG6#%&omegaG-%#&^G6 $-F)6$-F%6#%\"xG-F%6#%\"yG-F%6#%\"zG" }{TEXT -1 7 ".\n " }{TEXT 274 8 "Ayuda : " }{TEXT -1 63 "el comando para resolver una ecuaci\363 n diferencial ordinaria es " }{HYPERLNK 17 "dsolve" 2 "dsolve" "" }} {PARA 0 "" 0 "" {TEXT -1 14 "b) Determine " }{TEXT 290 2 "f " }{TEXT -1 10 " para que " }{XPPEDIT 18 0 "omega;" "6#%&omegaG" }{TEXT -1 13 " sea cerrada." }}{PARA 0 "" 0 "" {TEXT -1 14 "c) Determine " }{TEXT 291 2 "f " }{TEXT -1 26 " para que exista una forma" }}{PARA 265 "" 0 "" {TEXT -1 26 " " }{XPPEDIT 18 0 "omega[1] = P(x,y,z)*d(x)+Q(x,y,z)*d(y);" "6#/&%&omegaG6#\"\"\",&*&-%\"PG6%%\"xG% \"yG%\"zGF'-%\"dG6#F-F'F'*&-%\"QG6%F-F.F/F'-F16#F.F'F'" }}{PARA 0 "" 0 "" {TEXT -1 5 " con " }{XPPEDIT 18 0 "P(x,y,0) = 0;" "6#/-%\"PG6%%\" xG%\"yG\"\"!F)" }{TEXT -1 2 ", " }{XPPEDIT 18 0 "Q(x,y,0) = 0;" "6#/-% \"QG6%%\"xG%\"yG\"\"!F)" }{TEXT -1 3 " y " }{XPPEDIT 18 0 "d(omega[1]) = omega;" "6#/-%\"dG6#&%&omegaG6#\"\"\"F(" }{TEXT -1 1 "." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 23 "2) Sea U un abier to de " }{XPPEDIT 18 0 "R^3;" "6#*$%\"RG\"\"$" }{TEXT -1 30 " constitu \355do por los puntos ( " }{XPPEDIT 18 0 "x,y,z;" "6%%\"xG%\"yG%\"zG" }{TEXT -1 13 " ) tales que " }{XPPEDIT 18 0 "xyz;" "6#%$xyzG" }{TEXT -1 48 " sea distinto de 0; consideremos en U la 1-forma" }}{PARA 260 " " 0 "" {XPPEDIT 18 0 "omega = d(x)/(y*z)+d(y)/(x*z)+d(z)/(x*y);" "6#/% &omegaG,(*&-%\"dG6#%\"xG\"\"\"*&%\"yGF+%\"zGF+!\"\"F+*&-F(6#F-F+*&F*F+ F.F+F/F+*&-F(6#F.F+*&F*F+F-F+F/F+" }{TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 26 "a) Probar que la ecuaci\363n " }{XPPEDIT 18 0 "omega = 0; " "6#/%&omegaG\"\"!" }{TEXT -1 29 " es completamente integrable." }} {PARA 0 "" 0 "" {TEXT -1 38 "b) Determinar el factor integrante de " } {XPPEDIT 18 0 "omega;" "6#%&omegaG" }{TEXT -1 24 ", es decir, una func i\363n " }{TEXT 292 1 "f" }{TEXT -1 10 " de clase " }{XPPEDIT 18 0 "C^ [1]" "6#)%\"CG7#\"\"\"" }{TEXT -1 9 " tal que " }{XPPEDIT 18 0 "d(f*om ega) = 0;" "6#/-%\"dG6#*&%\"fG\"\"\"%&omegaGF)\"\"!" }{TEXT -1 1 "." } }{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 62 "3) Consi dere la ecuaci\363n diferencial ordinaria de tercer orden" }}{PARA 0 " " 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 261 "" 0 "" {TEXT -1 26 " " }{XPPEDIT 18 0 "diff(y,`$` (x,3)) = F(diff(y,`$`(x,2)),diff(y,x),x);" "6#/-%%diffG6$%\"yG-%\"$G6$ %\"xG\"\"$-%\"FG6%-F%6$F'-F)6$F+\"\"#-F%6$F'F+F+" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 97 "y construya un sistema d e 1-formas equivalente a esta ecuaci\363n diferencial en las variable s (" }{TEXT 275 1 "x" }{TEXT -1 3 ", " }{XPPEDIT 18 0 "u,w,r;" "6%% \"uG%\"wG%\"rG" }{TEXT -1 16 " ), definiendo " }}{PARA 262 "" 0 "" {XPPEDIT 18 0 "u = y,w = diff(y,x),r = diff(y,`$`(x,2));" "6%/%\"uG%\" yG/%\"wG-%%diffG6$F%%\"xG/%\"rG-F)6$F%-%\"$G6$F+\"\"#" }}{PARA 0 "" 0 "" {TEXT -1 72 "El sistema de 1-formas correspondiente a esta ecuaci \363n diferencial ser\341" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 263 "" 0 "" {XPPEDIT 18 0 "sigma[1] = 0,sigma[2] = 0,sigma[3] = 0;" "6 %/&%&sigmaG6#\"\"\"\"\"!/&F%6#\"\"#F(/&F%6#\"\"$F(" }{TEXT -1 1 "." }} {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 97 "Determine la forma m\341s general de estas tres 1-formas y demuestre que este s istema es integrable." }}}}{MARK "0 2 0" 0 }{VIEWOPTS 1 1 0 1 1 1803 1 1 1 1 }{PAGENUMBERS 0 1 2 33 1 1 }