Algebra I Segundo Examen Parcial (06-12-04)

Nombre y apellido:

Turno:

1	2	3	4	5

Tema 1

- 1. Calcular el resto de dividir $\frac{11^{20!}-1}{2}$ por 9196.
- 2. Determinar la forma binómica de los números complejos z tales que $\arg(z)=\arg(z^3)+\pi/2$ y |z|=2.
- 3. Sea $w \in G_7$, $w \neq 1$. Probar que $(w^{16} w^5 + w^{29} \overline{w} w^{-18} + w^{11})^3$ es imaginario puro.
- 4. Demostrar que el polinomio $X^{2n}-nX^2+n-1$ es divisible por X^3+X^2-X-1 cualquiera sea $n\in\mathbb{N}$.
- 5. Sea $f=2X^6-11X^5+14X^4+26X^3-70X^2+21X+30$. Factorizar f en $\mathbb{Q}[X]$, $\mathbb{R}[X]$ y $\mathbb{C}[X]$, sabiendo que tiene una raíz común con el polinomio $X^4-4X^3+6X^2-4X+5$.

Nota. Justifique debidamente todas sus respuestas.

Algebra I Segundo Examen Parcial (06-12-04)

Nombre y apellido:

Turno:

1	2	3	4	5

Tema 2

- 1. Calcular el resto de dividir $\frac{13^{20!}-1}{2}$ por 11492.
- 2. Determinar la forma binómica de los números complejos z tales que $\arg(z)=\arg(z^3)-\pi/2$ y |z|=2.
- 3. Sea $w \in G_7$, $w \neq 1$. Probar que $(w^{-3} w^{26} w^6 + \overline{w}^5 + w^{36} w^{17})^5$ es imaginario puro.
- 4. Demostrar que el polinomio $X^{2n+1}-nX^2-X+n$ es divisible por X^3-X^2-X+1 cualquiera sea $n\in\mathbb{N}.$
- 5. Sea $f=2X^6-11X^5+23X^4-19X^3-39X^2+82X-30$. Factorizar f en $\mathbb{Q}[X]$, $\mathbb{R}[X]$ y $\mathbb{C}[X]$, sabiendo que tiene una raíz común con el polinomio $X^4-2X^3+7X^2-4X+10$.

Nota. Justifique debidamente todas sus respuestas.