ALGEBRA II

Práctica N°6

Sea A un anillo, sea M un A-módulo y sea S un sistema de generadores de M. Decimos que S es un sistema de generadores minimal de M si ningún subconjunto propio de S es un sistema de generadores de M.

Sea A un anillo y sea M un A-módulo. Diremos que M es localmente cíclico si todo submdulo de M de tipo finito es cíclico

- 1. Probar que los grupos abelianos \mathbb{Q}^* , \mathbb{R}^* , \mathbb{C}^* , $\mathbb{Q}_{>0}$ y $\mathbb{R}_{>0}$ no son finitamente generados
- 2. Sea M un A-módulo no nulo finitamente generado. Probar que si \mathcal{S} es un sistema de generadores de M entonces existen $x_1, \ldots, x_n \in \mathcal{S}$ tales que $M = \langle x_1, \ldots, x_n \rangle$.
- 3. Probar que
 - (i) Todo A-módulo de tipo finito posee un sistema de generadores minimal.
 - (ii) Para todo $n \in \mathbb{N}$ existe en \mathbb{Z} (considerando a \mathbb{Z} como \mathbb{Z} -módulo) un sistema de generadores minimal con n elementos.

4. Probar que

- (i) Todo submdulo de un mdulo localmente cíclico es localmente cíclico
- (ii) Si M es localmente cíclico y $f:M\longrightarrow N$ es un epimorfismo de A-módulo entonces N es localmente cíclico
- (iii) \mathbb{Q} y \mathbb{Q}/\mathbb{Z} son grupos abelianos (\mathbb{Z} -módulos) localmente cíclicos pero no son de tipo finito
- 5. Sea k un cuerpo y $A = \bigcup_{n=1}^{\infty} k[x_1, \dots, x_n]$. Probar que el ideal $I := \langle x_i : i \in \mathbb{N} \rangle$ no es finitamente generado como A-mdulo.
- 6. Sea A un anillo. Probar que si A es local entonces AA es indescomponible
- 7. Sea K un cuerpo, $A = K[X]/\langle X^n \rangle$. Probar que A es un A-módulo indescomponible pero que no es un A-módulo simple.

Módulos libres

Un A-módulo M se dice *libre* sii existe un conjunto I tal que $M \simeq A^{(I)}$.

- 8. Decidir cuáles de las siguientes afirmaciones son verdaderas:
 - (i) De todo sistema de generadores de M puede extraerse una base.
 - (ii) Todo conjunto linealmente independiente en M puede extenderse a una base.
 - (iii) Todo módulo es libre.
 - (iv) Todo submódulo de un módulo libre es libre.
 - (v) Si $x \in M$ es no nulo entonces $\{x\}$ es linealmente independiente.
 - (vi) Existen módulos libres con elementos no nulos que son linealmente dependientes.
 - (vii) Existen módulos no libres tales que todo elemento no nulo es linealmente independiente.
 - (viii) Si A es un anillo íntegro y M es un A-módulo libre entonces todo elemento no nulo de M es linealmente independiente.
- 9. Probar que:
 - (i) L A-módulo libre $\iff L$ admite una base. (base: sistema de generadores linealmente independiente)
 - (ii) L A-módulo libre, $x \in L$ no nulo $\Longrightarrow \forall a \in An(x) : \exists b \in A^*$ tal que ab = 0. En particular, si A es íntegro, todo elemento no nulo de L es linealmente independiente.
 - (iii) Existen módulos libres con submódulos libres que no son sumandos directos.
- 10. (i) Sea $(M_i)_{i \in I}$ una familia infinita de A-módulos no nulos y S un sistema de generadores de $\bigoplus_{i \in I} M_i$. Probar que $\sharp S \geq \sharp I$.
 - (ii) Sea L un A-módulo con una base infinita B. Probar que para todo sistema de generadores S resulta $\sharp S \geq \sharp B$; y para toda base B' de L se verifica que $\sharp B = \sharp B'$. En particular toda base de L es infinita. ($\sharp A = \text{cardinal de } A$)
 - (iii) Existen módulos libres que admiten bases finitas no coordinables. Ejemplo: Sea $B = \operatorname{End}_A(A^{(\mathbb{N})})$. Definimos $u, v \in B$ por:

$$u(e_{2i+1}) = 0$$
 $u(e_{2i}) = e_i$
 $v(e_{2i+1}) = e_i$ $u(e_{2i}) = 0$

Probar que $\{u, v\}$ es una base de B como B-módulo.

- 11. Sea D un anillo de división, y sea V un D-espacio vectorial.
 - (i) Lema de agregado: Sea B un conjunto de elementos linealmente independientes de V, y $x \in V$ que no es combinación lineal de estos. Probar que $B \cup \{x\}$ es linealmente independiente.

2

- (ii) Lema de intercambio: Sea B un conjunto de elementos linealmente independientes de V y G un sistema de generadores de V. Probar que $\forall b \in B : \exists g \in G / (B \{x\}) \cup \{g\}$ es un conjunto linealmente independiente.
- (iii) Deducir que dos bases cualesquiera de V son coordinables.

12. (Optativo)

Un anillo A tiene noción de rango si se verifica que $A^{(I)} \simeq A^{(J)} \Longrightarrow \sharp I = \sharp J$.

Probar que todo anillo conmutativo tiene noción de rango.

(<u>Sugerencia</u>: Para el caso finito, considerar un morfismo de anillos $\varphi: A \to K$ para algn cuerpo K y "extender" el isomorfismo $A^n \simeq A^m$ a $K^n \simeq K^m$.)

Módulos proyectivos

Un A-módulo P se dice proyectivo si para todo morfismo $f: P \to M$ y todo epimorfismo $g: N \to M$ existe un morfismo $h: P \to N$ tal que $g \circ h = f$.

- 13. Dado un A-módulo P. Probar que las siguientes propiedades son equivalentes:
 - (i) P es proyectivo.
 - (ii) Todo epimorfismo $\pi: M \to P$ es una retraccin.
 - (iii) P es (isomorfo a un) sumando directo de un A-módulo libre.
 - (iv) Existen una familia $\{x_i\}_{i\in I}\subset P$ y una familia de formas lineales $\{f_i\}_{i\in I}\subset \operatorname{Hom}_A(P,A)$ tales que $\forall x\in P$ la familia $\{f_i(x)\}_{i\in I}\subset A$ tiene soporte finito y $x=\sum_{i\in I}f_i(x).x_i$
- 14. (i) Probar que todo módulo libre es proyectivo.
 - (ii) Dar ejemplos de módulos proyectivos que no sean libres.
- 15. Sea M un A-módulo, P un A-módulo proyectivo y $S \subset P$ un submódulo maximal. Probar que $\operatorname{Hom}_A(M, P/S) \neq 0 \Longrightarrow \operatorname{Hom}_A(P, M) \neq 0$.
- 16. (i) Un A-módulo P es proyectivo de tipo finito sii es isomorfo a un sumando directo de un A-módulo libre de tipo finito.
 - (ii) Si A es un anillo conmutativo y P y P' son A-módulos proyectivos de tipo finito, entonces $\operatorname{Hom}_A(P,P')$ es un A-módulo proyectivo de tipo finito.