ALGEBRA II - Práctica $N^{\circ}4$ - Primera Parte - Primer cuatrimestre de 2003 Anillos: generalidades.

Ejercicio 1. Probar que los siguientes conjuntos, con las operaciones definidas, tienen estructura de anillo. Decidir cuáles son conmutativos, dominios íntegros, anillos de división y/o cuerpos.

- i) $A^{n \times n}$ el conjunto de matrices de $n \times n$ a coeficientes en un anillo conmutativo A con la suma y el producto usual de matrices.
- ii) $\{f: X \longrightarrow A\}$, donde X es un conjunto no vacío y A es un anillo,

$$(f+g)(a) = f(a) + g(a); (f.g)(a) = f(a).g(a)$$

- iii) $A_1 \times \ldots \times A_n$, donde A_1, \ldots, A_n son anillos, y la suma y el producto se definen coordenada a coordenada.
- iv) $\{\mathcal{P}(X), \triangle, \cap\}$ donde X es un conjunto no vacío.
- v) $\mathbb{Z}[\sqrt{d}] = \{a + b\sqrt{d} : a, b, d \in \mathbb{Z}\}$, con la suma y producto usual de números complejos.
- vi) $(Hom(G,G),+,\circ)$ donde G es un grupo abeliano con la suma usual de morfismos y la composición de morfismos.

Ejercicio 2.

- i) Sea $(\mathbb{Z}_n, +, .)$ el anillo de enteros módulo n. Probar que \mathbb{Z}_n es un cuerpo si y sólo si n es primo.
- ii) Sea $(\mathbb{Z}_n, +)$ el grupo de enteros módulo n. Probar que si \circ es un producto que hace de $(\mathbb{Z}_n, +, \circ)$ un anillo, entonces \circ coincide con el producto usual de enteros módulo n.

Ejercicio 3. Probar que todo dominio de integridad finito es un cuerpo. (Sugerencia: Dado cualquier elemento no nulo, considerar la función que se obtiene multiplicando por él.)

Ejercicio 4. Sea C[0,1] el anillo de funciones continuas de [0,1] en \mathbb{R} con la suma y el producto punto a punto. Determinar si es íntegro y caracterizar sus unidades.

Ejercicio 5. Consideremos el anillo $\mathbb{Z}[\sqrt{3}]$.

Universidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Departamento de Matemática

- i) Probar que en $\mathbb{Z}[\sqrt{3}]$ la escritura es única. Es decir, que si $a+b\sqrt{3}=c+d\sqrt{3}$, entonces a=c y b=d.
- ii) Sea $N: \mathbb{Z}[\sqrt{3}] \longrightarrow \mathbb{Z}$ la función (norma) definida por $N(a+b\sqrt{3})=a^2-3b^2$. Probar que es multiplicativa.
- iii) Probar que $2 + \sqrt{3}$ es una unidad.
- iv) Probar que $z \in \mathbb{Z}[\sqrt{3}]$ es una unidad si y sólo si N(z) = 1 ó N(z) = -1.
- v) Hallar infinitas unidades de $\mathbb{Z}[\sqrt{3}]$.

Ejercicio 6. Caracterizar los grupos de unidades de los siguientes anillos:

 \mathbb{Z} , K cuerpo, $\mathbb{Z}[i]$, $\mathbb{Z}[\sqrt{-5}]$, A[X] con A dominio integro.

Ejercicio 7. Sea K un cuerpo y sea $K[[X]] := \{\sum_{n=0}^{\infty} a_n X^n / a_n \in K\}$ el anillo de series formales a coeficientes en K. Probar que una serie $\sum a_n X^n$ es una unidad si y sólo si $a_0 \neq 0$.

Ejercicio 8. Sea G un grupo finito y sea $\mathbb{Z}[G]$ el anillo de grupo a coeficientes en \mathbb{Z} .

- i) Sea $\mathcal{C} \subset G$ la clase de conjugación de un elemento de G. Probar que $\sum_{g \in \mathcal{C}} g$ está en el centro de $\mathbb{Z}[G]$.
- ii) Caracterizar el centro de $\mathbb{Z}[G]$.

Ejercicio 9.

- i) Hallar todos los ideales de \mathbb{Z} y de K[X] (K cuerpo). ¿Cuáles son primos?
- ii) Encontrar ideales en $\mathbb{Z}[X]$ y en K[X,Y] no principales.

Ejercicio 10. Sea A un anillo. Probar que A es un anillo de división si y sólo si los únicos ideales a izquierda de A son $\{0\}$ y A.

Ejercicio 11. Sea K un cuerpo. Probar que el conjunto de todas las matrices en $K^{n \times n}$ con todas las columnas nulas salvo la primera es un ideal a izquierda principal en $K^{n \times n}$.

Ejercicio 12. Sea A un anillo. Probar:

i) Si $I \subset A$ es un ideal bilátero, entonces

$$I^{n\times n}:=\{M\in A^{n\times n}\ /\ M_{ij}\in I\ \forall i,j\}$$

Universidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Departamento de Matemática es un ideal bilátero de $A^{n \times n}$.

ii) (*) Si $J \subset A^{n \times n}$ es un ideal bilátero e

$$I := \{ a \in A \ / \ \exists \ M \in J : M_{ij} = a \text{ para un par } (i, j) \}$$

entonces I es un ideal bilátero de A y $J = I^{n \times n}$.

- iii) Si K es cuerpo, $K^{n\times n}$ no tiene ideales biláteros propios. (Deducirlo de ii) o bien hacer una demostración aparte.) Comparar con el ejercicio 10.
- iv) (*) Hallar todos los ideales a izquierda de $K^{n \times n}$.

Ejercicio 13. Sea K[[X]] el anillo de series formales a coeficientes en un cuerpo K. Probar que todos los ideales de K[[X]] son de la forma $\langle X^n \rangle$ y que para distintos valores de n estos ideales son distintos. Deducir que K[[X]] tiene un único ideal maximal.

Ejercicio 14. Determinar si existe un morfismo de anillos de A en B en cada uno de los siguientes casos

i)
$$A = \mathbb{Z}[i]$$
 $B = \mathbb{R}$

ii)
$$A = \mathbb{Z}[\sqrt{-5}]$$
 $B = \mathbb{Z}[\sqrt{3}]$

iii)
$$A = K$$
 $B = K^{n \times n}$ (K cuerpo)

iv)
$$A = K^{n \times n}$$
 $B = K$ (K cuerpo)

Ejercicio 15. Hallar todos los morfismos de anillos de $\mathbb{Z}[i]$ en \mathbb{C} .

Ejercicio 16. Sea $p \in \mathbb{Z}$ un primo. Probar que $\mathbb{Z}[X] / \cong \mathbb{Z}[p[X]$.

Ejercicio 17. Probar que $\mathbb{Z}[X] / \langle X^2 + 1 \rangle \simeq \mathbb{Z}[i]$.

Ejercicio 18. Sea K un cuerpo y sea $f \in K[X]$. Probar que K[X] / < f > es un cuerpo si y sólo si f es irreducible en K[X].

Ejercicio 19. Probar que un anillo conmutativo A es un cuerpo si y sólo si todo morfismo de anillos que tiene por dominio a A es inyectivo.

Universidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Departamento de Matemática

Ejercicio 20.

- i) Probar que $\mathbb{Z}\left[\,i\,\right]/<1+i>\,\simeq\,\mathbb{Z}_2$
- ii) Caracterizar los siguientes anillos:
 - a) $\mathbb{Z}[i]/<1+2i>$
 - b) $\mathbb{Z}[\sqrt{5}]/<1+2\sqrt{5}>$
 - c) $\mathbb{Z}[X]/<2,X>$
 - d) $\mathbb{Z}[X]/<2X>$

Ejercicio 21. Probar que los siguientes anillos son isomorfos:

- i) $\mathbb{Z}[X,Y]/\langle XY-1 \rangle \cong \mathbb{Z}[\mathbb{Z}]$
- ii) $\mathbb{Z}[X]/\langle X^n-1\rangle \simeq \mathbb{Z}[\mathbb{Z}_n]$

Ejercicio 22. Caracterizar las unidades de ZZ [X] / < X^n >