ALGEBRA II - Práctica N°5 - Primer cuatrimestre de 2003

Módulos.

A lo largo de esta práctica A-módulo significará A-módulo a izquierda.

Ejercicio 1.

- i) Sea A un anillo, sea M un A-módulo y sea X un conjunto no vacío. Probar que $M^X = \{f: X \to M\}$ y $M^{(X)} = \{f: X \to M \mid f(x) = 0 \text{ salvo para finitos valores de } x\}$ son A-módulos.
- ii) Sea G un grupo abeliano y sea End(G) el anillo de endomorfismos de G. Probar que G es un End(G)-módulo con la acción definida por f.x = f(x).
- iii) Sea A un anillo. Probar que el conjunto A^n es un $A^{n \times n}$ -módulo con la multiplicación de matrices por vectores.

Ejercicio 2. Sea A un anillo y sean M y N A-módulos. Probar que $M \times N$ con la suma y la acción coordenada a coordenada es un A-módulo, que se nota $M \oplus N$.

Ejercicio 3. Sean A y B anillos, sea M un B-módulo y sea $\varphi: A \longrightarrow B$ un morfismo de anillos. Probar que la acción $a._{\varphi}x = \varphi(a).x$ define una estructura de A-módulo sobre M.

Ejercicio 4. Sea M un A-módulo y sea S un subconjunto de M. Se llama anulador de S al conjunto

$$Ann(S) = \{ a \in A/a.s = 0 \quad \forall s \in S \}.$$

Si $x \in M$, $Ann(\{x\})$ se nota Ann(x). Probar que

- i) Ann(S) es un ideal a izquierda de A. Si S es un submódulo de M, Ann(S) resulta un ideal bilátero.
- ii) Si $S \subseteq T$ entonces $Ann(T) \subseteq Ann(S)$.
- iii) $Ann(S) = \bigcap_{s \in S} Ann(s)$.
- iv) Si $J \neq \emptyset$ entonces $Ann(M^J) = Ann(M^{(J)}) = Ann(M)$.
- v) Si $I \subseteq Ann(M)$ es un ideal bilátero, entonces M es un A/I-módulo con la acción definida por $\overline{a}.m = a.m.$

Ejercicio 5. Sea M un A-módulo y sean S un subconjunto de M y N un submódulo de M. Se llama transportador de S en N al conjunto

$$(N:S) = \{ a \in A/a.s \in N \quad \forall s \in S \}.$$

Si $x \in M$, $(N : \{x\})$ se nota (N : x).

- a) Probar que:
 - i) (N:S) es un ideal a izquierda de A.
 - ii) (0:S) = Ann(S) y (N:S) = A si y sólo si $S \subseteq N$.
 - iii) Si $S \subseteq T$ entonces $(N:T) \subseteq (N:S)$.
 - iv) Si P es un submódulo de M tal que $N \subseteq P$ entonces $(N:S) \subseteq (P:S)$.
 - v) $(N:x).x = N \cap A.x$.
 - vi) Si $J \neq \emptyset$ entonces $(N^J : M^J) = (N^{(J)} : M^{(J)}) = (N : M)$.
- b) Hallar $(m\mathbb{Z}:n)$ para $m,n \in \mathbb{N}$.

Ejercicio 6.

- i) Sea A un anillo y sea $B \in \mathcal{C}(A)^{m \times n}$. Probar que el conjunto $\{x \in A^n \ / \ B.x = 0\}$ es un submódulo de A^n . Encontrar un ejemplo de submódulo de A^n que **no** sea de esta forma.
- ii) Sea A un anillo, I un ideal a izquierda de A y M un A-módulo. Probar que $I.M = \{\sum_{i=1}^r a_i.m_i \mid a_i \in I; m_i \in M \ \forall i\}$ es un submódulo de M. Probar que, dado $x \in M$, $I.x = \{a.x \mid a \in I\}$ es un submódulo de M.

Ejercicio 7. Probar en cada uno de los siguientes casos que f es un morfismo de módulos. Hallar su núcleo, su imagen y determinar si es monomorfismo, epimorfismo, sección, retracción o isomorfismo

- i) Si n < m, $f: M^n \longrightarrow M^m$, $f(x) = (x_1, \dots, x_n, 0, \dots 0)$ con M un A-módulo.
- ii) Si n < m , $f: M^m \longrightarrow M^n$, $f(x) = (x_1, \dots, x_n)$ con M un A-m'odulo.
- iii) Fijado $a\in\,A$, $f:A[X]\longrightarrow A$, f(g)=g(a) con A un anillo.
- iv) $f: \mathbb{Z} \to \mathbb{Z}$, f(x) = 2.x.
- v) $f: \mathbb{Z} \to \mathbb{Z}_n, f(x) = \overline{x}.$

Ejercicio 8. Sean M,N y P A-módulos y sean $f:M\longrightarrow N$ y $g:N\longrightarrow P$ dos aplicaciones. Probar que:

- i) Si f y g son morfismos de A-módulos entonces $g \circ f$ es un morfismo de A-módulos.
- ii) Si $g \circ f$ es un morfismo de A-módulos y g es un monomorfismo entonces f es un morfismo de A-módulos.
- iii) Si $g \circ f$ es un morfismo de A-módulos y f es un epimorfismo entonces g es un morfismo de A-módulos.

Ejercicio 9. Si M y N son conjuntos y $f: M \longrightarrow N$ es una función, el conjunto

$$\Gamma(f) = \{(x, f(x))/x \in M\}$$

se llama el gráfico de f. Probar que si M y N son A-módulos entonces f es un morfismo de A-módulos si y sólo si $\Gamma(f)$ es un submódulo de $M \oplus N$.

Ejercicio 10. Sean V y W dos \mathbb{Q} -espacios vectoriales y sea $f:V\to W$ una aplicación. Probar que f es una transformación lineal de \mathbb{Q} -espacios vectoriales si y sólo si $f:V\to W$ es un morfismo de grupos.

Ejercicio 11. Sea A un anillo y sea M un A-módulo. Caracterizar el módulo cociente N/S en cada uno de los siguientes casos:

- i) $N = M^n$, $S = \{x \in N/x_1 + \dots + x_n = 0\}.$
- ii) $N = M^n \ (n > 2)$, $S = \{x \in N/x_1 = x_n \ y \ x_2 = 0\}.$
- iii) N = A[X], $S = \{ f \in A[X]/f(1) = 0 \}$.

Ejercicio 12. Sea A un anillo y sean M y N dos A-módulos. Probar que:

- i) $Hom_A(M, N)$ con la suma definida por (f+g)(x)=f(x)+g(x) es un grupo abeliano.
- ii) Si A es conmutativo, la acción (a.f)(x) = a.f(x) define sobre el grupo abeliano $Hom_A(M,N)$ una estructura de A-módulo. Para A no necesariamente conmutativo, esta acción define sobre $Hom_A(M,N)$ una estructura de $\mathcal{C}(A)$ -módulo.

Ejercicio 13. Sea A un anillo conmutativo. Dado un A-módulo M se llama dual de M al A-módulo $M^* = Hom_A(M, A)$.

i) Probar que la aplicación $\Gamma: M \longrightarrow M^{**}$ definida por

$$\Gamma(x)(f) = f(x) \qquad (x \in M, f \in M^*)$$

es un morfismo de A-módulos y que
$$Ker(\Gamma) = \bigcap_{f \in M^*} Ker(f)$$
.

- ii) Hallar un ejemplo de módulo M no nulo tal que $M^{**} = \{0\}.$
- ii) Hallar un ejemplo de módulo M con $M^{**} \neq \{0\}$ y Γ no inyectiva.

Ejercicio 14. Sea M un A-módulo. Probar que $Hom_A(A, M) \simeq M$ como $\mathcal{C}(A)$ -módulos.

Ejercicio 15. Sea A un dominio íntegro y sea K su cuerpo de cocientes. Probar que $End_A(K) \simeq K$ como A-módulos.

Ejercicio 16. Sea A un anillo conmutativo y sean I y J ideales. Probar que

$$Hom_A(A/I, A/J) \simeq (J:I)/J.$$

Aplicar a $A = \mathbb{Z}$ y comparar con el ejercicio 32, ítem iii) de la práctica 1.

Ejercicio 17. Un A-módulo M se dice simple si $M \neq \{0\}$ y sus únicos submódulos son $\{0\}$ y M.

- i) Probar que un A-módulo M es simple si y sólo si $M \neq \{0\}$ y $A.x = M \ \forall x \in M \{0\}$.
- ii) Sea $f: M \longrightarrow N$ un morfismo de A-módulos. Probar que:
 - a) Si M es simple entonces f=0 o f es un monomorfismo.
 - b) Si N es simple entonces f=0 o f es un epimorfismo.
 - c) Si M y N son simples entonces f=0 o f es un isomorfismo.
- iii) Sea M un A-módulo. Probar que $End_A(M)$ con la suma definida por (f+g)(x) = f(x) + g(x) y la composición de funciones es un anillo y que, cuando M es simple, $End_A(M)$ es un anillo de división.
- iv) Sea K un cuerpo y sea V un K-espacio vectorial de dimensión finita. Probar que V es un $End_K(V)$ -módulo simple.

Ejercicio 18. Dado $n \in \mathbb{N}$, determinar todos los sumandos directos de \mathbb{Z}_n como grupo abeliano.

Ejercicio 19. Sea M un A-módulo y sean S y T submódulos de M. Probar que $M = S \oplus T$ si y sólo si existe $e: M \longrightarrow M$ proyector $(e^2 = e)$ tal que S = Ker(e) y T = Im(e).

Ejercicio 20. Sea $f: M \longrightarrow N$ un morfismo de A-módulos. Probar que:

- i) f es sección si y sólo si f es monomorfismo e Im(f) es un sumando directo de N.
- ii) f es retracción si y sólo si f es epimorfismo y Ker(f) es un sumando directo de M.

Ejercicio 21. Probar que no existe un epimorfismo de grupos

- i) de $\mathbb{Z}_{p^{\infty}}$ en $\mathbb{Z}_{p^{\infty}} \oplus \mathbb{Z}_p$.
- ii) de \mathbb{Q} en $\mathbb{Z}_{p^{\infty}} \oplus \mathbb{Z}_{p^{\infty}}$.
- iii) de \mathbb{Q}/\mathbb{Z} en $\mathbb{Z}_{p^{\infty}} \oplus \mathbb{Z}_n$.

Ejercicio 22. Sea p un primo. Probar que no existe una sección

- i) de \mathbb{Z}_p en $\mathbb{Z}_{p^2} \oplus \mathbb{Z}_{p^2}$.
- ii) de $\mathbb{Z}_p \oplus \mathbb{Z}_p$ en $\mathbb{Z}_p \oplus \mathbb{Z}_{p^2}$.

Ejercicio 23. Probar que $\mathbb{Z}^2 \simeq <(m,n)> \oplus <(r,s)>$ si y sólo si |ms-nr|=1. Deducir que <(m,n)> es sumando directo de \mathbb{Z}^2 si y sólo si (n:m)=1.