Algebra II - Práctica 3.

Segundo cuatrimestre de 2003.

1. Si $G \simeq_d H.K$ con $H \vee K$ abelianos, entonces G es abeliano.

2. Probar que S_n y D_n ; $n \geq 3$ son isomorfos a productos semidirectos convenientes.

3. \mathcal{L} Es \mathcal{H} isomorfo a algún producto semidirecto?

4. Probar que S es un factor semidirecto de G en los siguientes casos:

(a)
$$G = \mathbb{C}^*$$
 $S = S^1$

(b)
$$G = G_{12}$$
 $S = G_3$

(c)
$$G = \mathbb{C}$$
 $S = \mathbb{R}$

(d)
$$G = GL(n, \mathbb{C})$$
 $S = SL(n, \mathbb{C})$

5. Probar en cada uno de los siguientes casos que el grupo G actúa sobre el conjunto X. En cada caso calcular GX , las G-órbitas de X y el estabilizador de cualquier elemento de X

(a)
$$G = \{f : \mathbb{R} \longrightarrow \mathbb{R}, f(x) = ax + b \text{ con } a \in \mathbb{R}^*, b \in \mathbb{R}\}, X = \mathbb{R} \text{ y } f.x = f(x)\}$$

(b)
$$G = \mathbb{R}^*$$
, $X = \mathbb{R}_{>0}$ y $a.x = x^a$ con $a \in \mathbb{R}^*$ y $x \in \mathbb{R}_{>0}$.

(c)
$$G = SL(2, \mathbb{Z}), X = \mathbb{Z} \times \mathbb{Z} \ y \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = (ax + by, cx + dy)$$

6. Sea G un grupo actuando sobre un conjunto X y $S \triangleleft G$. Determinar la condición necesaria y suficiente para que exista una acción de G/S en X tal que $\bar{a} \cdot x = a \cdot x \quad \forall \ a \in G$ y $x \in X$.

7. Sea X un conjunto finito. Determinar el número posible de acciones de \mathbb{Z} sobre X.

8. Sea G un grupo.

- (a) Probar que si $|G| = p^n$ con p primo y $n \in \mathbb{N}$ entonces $\mathcal{C}(G) \neq 1$
- (b) Probar que si $G/\mathcal{C}(G)$ es cíclico entonces G es abeliano
- (c) Probar que si $|G| = p^2$ con p primo entonces G es abeliano
- (d) Caracterizar todos los grupos de orden p^2 .
- (e) Dar un ejemplo de un grupo G no abeliano tal que $G/\mathcal{C}(G)$ sea abeliano.

9. Sea G un grupo no abeliano tal que $|G| = p^3$. Probar que $\mathcal{C}(G) = [G; G]$ y calcular $|\mathcal{C}(G)|$.

10. Sea G un grupo tal que |G|=2n, G tiene n elementos de orden 2 y los restantes forman un subgrupo H. Probar que entonces n es impar y $H \triangleleft G$.

11. Sea p primo y |G| = n. Entonces existe k tal que $n = p^k \Leftrightarrow \forall x \in G$, $ord(x) = p^s$ para algún s. (s depende de x)

- 12. G es un p-grupo $\Leftrightarrow \forall H \triangleleft G, H \vee G/H$ son p-grupos.
- 13. Calcular todos los p- subgrupos de Sylow de:

$$\mathbb{Z}_2$$
, \mathbb{Z}_{12} , $\mathbb{Z}_{21} \oplus \mathbb{Z}_{15}$, $S_3 \oplus \mathbb{Z}_3$, $S_3 \oplus S_3$

- 14. Sea G un grupo, |G| = pq, p > q primos tal que q no divide a p-1. Probar que G es cíclico.
- 15. Un grupo de orden 56 no es simple.
- 16. Sean p, q primos , $|G| = p^2 q$. Probar que G no es simple.
- 17. Probar que no existen grupos simples de los siguientes órdenes: 30, 36, 56, 96, 200, 204, 260, 2540, 9075.
- 18. Sea G con $|G|<\infty$ y p< q primos tal que p^2 no divide a |G|. Sean H_p y H_q subgrupos de Sylow de G con $H_p \triangleleft G$. Probar
 - (a) $H_p.H_q$ es subgrupo de G
 - (b) $H_p.H_q \triangleleft G \Rightarrow H_q \triangleleft G$.