Algebra II - Práctica 6.

Segundo cuatrimestre de 2003.

- 1. Sean A y B anillos conmutativos, \mathcal{P} un ideal primo de $B y f : A \longrightarrow B$ un morfismo de anillos. Probar que $f^{-1}(\mathcal{P})$ es un ideal primo.
- 2. Caracterizar los anillos cocientes

$$\begin{split} \mathbb{Z}[X]/<2, X> & \mathbb{Z}[X]/<2> & \mathbb{Z}[X]/<2X> & \mathbb{Z}[X]/ \\ \mathbb{Z}[X]/ & \mathbb{Z}[X]/ & \mathbb{Z}[i]/<2> & \mathbb{Z}[i]/<2, 1+i> \end{split}$$

- 3. Sea A un anillo conmutativo con unidad y sea A' subanillo con $1 \in A'$. Probar o dar contraejemplo:
 - (a) $A \text{ cuerpo} \Rightarrow A' \text{ cuerpo}$
 - (b) A dominio íntegro \Rightarrow A' dominio íntegro
 - (c) A' dominio íntegro $\Rightarrow A$ dominio íntegro
- 4. \not El $det: M_n(A) \longrightarrow A$ es un morfismo de anillos ?Y \not la traza?
- 5. Mostrar isomorfismos de
 - (a) $\mathbb{Q}[X]/\langle X^3 + X \rangle \simeq \mathbb{Q} \times \mathbb{Q}(i)$
 - (b) $\mathbb{R}[X]/\langle X^4 1 \rangle \cong \mathbb{R} \times \mathbb{R} \times \mathbb{C}$
- 6. A anillo conmutativo, $f \neq 0$ en A[X].

f es divisor de cero en $A[X] \Leftrightarrow$ existe $r \in A$ tal que $r \neq 0, rf = 0.$

- 7. A dominio íntegro, $a \in A$. Probar:
 - (a) $a \text{ primo} \Rightarrow a \text{ irreducible}$
 - (b) A DFU, a irreducible \Rightarrow a primo
 - (c) En $A = \mathbb{Z}[\sqrt{-5}]$: $3, 7, 4 + \sqrt{-5}, 1 + 2\sqrt{-5}, 1 2\sqrt{-5}$ son irreducibles y no primos. ξ Es $\mathbb{Z}[\sqrt{-5}]$ DFU? ξ Es DF?
- 8. $A \subseteq B \subseteq C$ dominios íntegros. Buscar algún ejemplo de A y C DFU, B no.
- 9. A dominio íntegro, I ideal propio de $A; \pi: A \longrightarrow A/I$ la proyección canónica. Sean $f = \sum_{i=0}^n a_i X^i \in A[X]$ mónico y $\bar{f} = \sum_{i=0}^n \pi(a_i) X^i \in A/I[X]$. Probar que:

f es reducible en $A[X] \Rightarrow \bar{f}$ es reducible en (A/I)[X]

- 10. Sea A DFU y \mathbb{K} su cuerpo de cocientes.
 - (a) Probar que si $f, g \in A[X]$ son polinomios primitivos, fg es primitivo.
 - (b) Probar que si $f \in A[X]$ es irreducible, entonces visto como polinomio con coeficientes en \mathbb{K} también es irreducible.
 - (c) Probar que si $f \in A[X]$ es primitivo y f es irreducible en $\mathbb{K}[X]$ entonces f es irreducible en A[X].
 - (d) Probar que A[X] es DFU.

11. Criterio de irreducibilidad de Eisenstein: Sea A un DFU y $\mathbb K$ su cuerpo de cocientes.

Sea $f = \sum_{i=0}^{n} a_i X^i \in A[X]$. Supongamos que exista un primo $p \in A$ tal que:

- (a) p no divide a a_n
- (b) p divide a a_i , $0 \le i \le n-1$
- (c) p^2 no divide a a_0

Probar que f es irreducible en $\mathbb{K}[X]$

- 12. **Lema de Gauss:** Sea A un DFU y \mathbb{K} su cuerpo de cocientes. Sea $f = \sum_{i=0}^{n} a_i X^i \in A[X]$ con $a_0 \neq 0$. Si p y q son elementos de A no nulos, coprimos entre sí tales que $\frac{p}{q} \in \mathbb{K}$ es raíz de f, demostrar que p/a_0 y q/a_n en A.
- 13. Probar que todo **ideal primo** de $\mathbb{Z}[X]$ es alguno de los siguientes:
 - (a) ó < p, f >con $p \in \mathbb{Z}$ primo, $f \in \mathbb{Z}[X]$ tal que $\bar{f} \in \mathbb{Z}_p[X]$ es irreducible en $\mathbb{Z}_p[X]$
 - (b) $\langle f \rangle$ donde f es primitivo e irreducible en $\mathbb{Q}[X]$
- 14. Sean \mathbb{K} un cuerpo y $f, g \in \mathbb{K}[X_1, \dots, X_n]$. Probar que:
 - (a) f + g = 0 ó $gr(f + g) \le max\{gr f, gr g\}$
 - (b) $fg = 0 \Rightarrow f = 0$ ó g = 0. (Es decir, $\mathbb{K}[X_1, \dots, X_n]$ es un dominio íntegro)
 - (c) gr(fg) = grf + grg. (Sug: descomponer a f y g en suma de polinomios homogéneos.)
 - (d) Cuáles son los elementos inversibles de $\mathbb{K}[X_1,\ldots,X_n]$?
 - (e) Probar que $\mathbb{K}[X_1,\ldots,X_n]$ tiene una estructura de \mathbb{K} -espacio vectorial y exhibir una base.
 - (f) Un polinomio de grado d en una variable tiene, a lo sumo, d+1 coeficientes no nulos o monomios. Cuántos coeficientes no nulos puede tener un polinomio de grado d en 2 variables?
 - (g) Cuántos coeficientes no nulos puede tener un polinomio homogéneo de grado d en n variables?
 - (h) Cuántos coeficientes no nulos puede tener un polinomio cualquiera de grado d en n variables?
 - (i) Cuál es la dimensión del \mathbb{K} -espacio vectorial $\mathbb{K}[X_1,\ldots,X_n] \leq d = \{f \in \mathbb{K}[X_1,\ldots,X_n] : f = 0 \text{ ó } \operatorname{gr} f \leq d\}.$
- 15. Caracterizar los anillos cocientes:

$$\mathbb{R}[X,Y,Z]/\!\!< X,Y> \qquad \mathbb{R}[X,Y,Z]/\!\!< X-Y^5> \qquad \mathbb{R}[X,Y,Z]/\!\!< Y-Z^3,Z-X^3>$$

- 16. Mostrar que X^2+Y^2-1 y XT-YZ son irreducibles en $\mathbb{Q}[X,Y]$ y $\mathbb{Q}[X,Y,Z,T]$ respectivamente.
- 17. Sea $I = \langle Y + X^2 1, XY 2Y^2 + 2Y \rangle \subset \mathbb{R}[X, Y]$. Decidir si $\mathbb{R}[X, Y]/I$ es un cuerpo.