Algebra II - Práctica 5

1er. Cuatrimestre 2004

Módulos

A lo largo de la práctica A-módulo significará A-módulo a izquierda.

- (1) Determinar si M es un A-módulo en cada uno de los siguientes casos:
 - (a) $A = \mathbb{Z}_n$, $M = \mathbb{Z}_m$ con $n, m \in \mathbb{N}$ tales que $m \mid n$, donde la acción esta dada por $\bar{a}.\bar{x} = \overline{ax}$
 - (b) $A = \mathbb{Z}$, $M = M_2(\mathbb{C})$ con la suma usual de matrices, y la acción dada por $a.B = aB^t$ (donde el subíndice t indica transpuesta).
 - (c) $A = \mathbb{R}[x]$, $M = \mathbb{R}^n$ con la suma usual de \mathbb{R}^n y la acción

$$f.(x_1,\ldots,x_n)=(f(1)x_1,f(0)x_2,\ldots,f(0)x_n)$$

- (d) $A = M_n(\mathbb{Z}), M = \mathbb{Z}$, con la suma usual de números enteros, y la acción a.m = Det(a)m.
- (2) Sean A y B anillos, sea M un B-módulo y $\phi:A\to B$ un morfismo de anillos. Probar que la acción $a._{\phi}x=\phi(a).x$ define una estructura de A-módulo sobre M.
- (3) Determinar si S es un submódulo del A-módulo M en cada uno de los siguientes casos:
 - (a) $A = \mathbb{Q}$, $M = M_n(\mathbb{Q})$, $S = \{(a_{ij}) \in M \mid a_{ii} = 0 \,\forall \, 1 \leq i \leq n\}$
 - (b) $A = \mathbb{Z}, M = M_n(\mathbb{Z}), S = \{(a_{ij} \in M \mid \text{Det}(a_{ij}) = 0\}$
 - (c) A un anillo cualquiera, $M = A^n$, $S = \{(x_1, \ldots, x_n) \in M \mid x_1 + \cdots + x_n = 0\}$.
 - (d) A un anillo cualquiera, M = A[x], $S = \{f \in M \mid f = 0 \text{ o deg}(f) \leq n\}$
 - (e) B un anillo cualquiera, $A = M_n(B)$, $M = B^n$ con la acción natural de A en M y $S = \{(x_1, \ldots, x_n) \in M \mid x_1 + \cdots + x_n = 0\}$.
- (4) Sea A un anillo conmutativo y sea M un A-módulo. Probar que f es un morfismo de A-módulos, hallar su núcleo, su imagen y determinar si f es monomorfismo, epimorfismo, sección, retracción o isomorfismo en cada uno de los siguientes casos:
 - (a) $f: M^n \to M^2$, $f(x) = (x_1 + x_n, x_n)$ (con n > 2).
 - (b) $f: M^n \to M^n$, $f(x) = (x_1, x_1 + x_2, \dots, x_1 + x_2 + \dots + x_n)$.
 - (c) Si $n \leq m, f: M^n \to M^m, f(x) = (x_1, \dots, x_n, 0, \dots, 0).$
 - (d) Si $n \le m, f: M^n \to M^m, f(x) = (x_1, \dots, x_n)$
 - (e) Fijado $a \in A$, $f: A[x] \to A$, f(g) = g(a).
 - (f) $f: M_n(A) \to A^n, f(a) = (a_{11}, \dots, a_{nn}).$
- (5) Un A-módulo M se dice simple si $M \neq \{0\}$ y sus únicos submódulos son $\{0\}$ y M.
 - (a) Probar que un A-módulo M es simple si y sólo si $M \neq \{0\}$ y A.x = M para todo $x \in M \setminus \{0\}$.
 - (b) Sea $f: M \to N$ un morfismo de A-módulos. Probar que:
 - Si M es simple entonces f = 0 o f es un monomorfismo.
 - Si N es simple entonces f = 0 o f es un epimorfismo.
 - Si M y N son simples, entonces f = 0 o f es un isomorfismo.
 - (c) Sea M un A-módulo. Probar que $End_A(M)$ con la suma definida por (f+g)(x)=f(x)+g(x) y la composición de funciones es un anillo, y que cuando M es simple, $End_A(M)$ es un anillo de división.

- (6) Sea M un A-módulo y sean S y T submódulos de M. Probar que $M = S \oplus T$ si y sólo si existe $e: M \to M$ proyector (i.e. $e^2 = e$) tal que $S = \ker(e)$ y $T = \operatorname{Im}(e)$.
- (7) Sea $f: M \to N$ un morfismo de A-módulos. Probar que:
 - f es sección si y sólo si f es monomorfismo e Im(f) es un sumando directo de N.
 - f es retracción si y sólo si f es epimorfismo y $\ker(f)$ es un sumando directo de M.
- (8) Sea el anillo $A = k \times k$ con la suma y el producto coordenada a coordenada (donde k es un anillo). Ver que el morfismo diagonal $k \to k \times k$ ($\lambda \mapsto (\lambda, \lambda)$) es un morfismo de anillos por lo tanto todo A-módulo es un k-módulo. Ver que $k \times \{0\}$ y $\{0\} \times k$ son dos A-submódulos de A, que son isomorfos como k-módulos pero no como A-módulos.
- (9) Sea $A=\mathbb{Z}$, y $M=\mathbb{Z}\oplus\mathbb{Z}$. Caracterizar el cociente de M por el \mathbb{Z} submódulo generado por (2,4) (sug.: encontrar un morfismo que salga de $\mathbb{Z}\oplus\mathbb{Z}$ que tenga como núcleo al generado por (2,4)). ¿Quién es $(\mathbb{Z}\oplus\mathbb{Z})/\langle (2,4), (0,3)\rangle$?
- (10) (Localización de módulos) Sea A un anillo, $S \subset Z(A)$ un subconjunto multiplicativamente cerrado y M un A-módulo a izquierda. Se define M_S como el cociente de los pares (m,s) con $m \in M$ y $s \in S$ bajo la relación de equivalencia $(m,s) \sim (m',s') \Leftrightarrow \exists t \in S$ tal que t(s'.m-s.m') = 0. La clase del elemento (m,s) bajo esta relación se lo denotará (como era de esperar) $\frac{m}{s}$, y a $\{(m,s) : m \in M, s \in S\}/\sim : M_S$.
 - (a) Ver que M_S es naturalmente un A-módulo a izquierda y que la función $j_M: M \to M_S$ dada por $m \mapsto \frac{m}{1}$ es A-lineal.
 - (b) Ver que además M_S es un A_S -módulo bajo la acción obvia $\frac{a}{s}\frac{m}{t}=\frac{a.m}{st}$, y que además $(j_M:M\to M_S)$ tiene la siguiente propiedad: Si N es un A_S -módulo (y por lo tanto tambien un A-módulo) y $(f:M\to N)$ es una morfismo A-lineal entonces existe una única $\bar{f}:M_S\to N$ que factoriza a f a través de j_M , es decir, que $f=\bar{f}\circ j_M$. En diagramas:

- (11) (Polinomios de Laurent) Sea k un cuerpo y $S\subset k[X]$ dado por $S=\{1,x,x^2,x^3,...,x^n,...\}.$ Entonces $k[X]_S\simeq k[X,X^{-1}]\simeq k[X,Y]/\langle X.Y-1\rangle.$
- (12) (Ideales a izq. de matrices) Sea k un cuerpo, consideremos el anillo $A=M_3(k)$ y $e\in M_3(k)$ la matriz $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. Ver lo siguiente:

 (a) $e^2=e$, el ideal a derecha $e.M_3(k)$ consiste de las matrices de la forma
 - (a) $e^2 = e$, el ideal a derecha $e.M_3(k)$ consiste de las matrices de la forma $\begin{pmatrix} * & * & * \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, el ideal a izquierda $M_3(k).e$ consiste de las matrices de la forma $\begin{pmatrix} * & 0 & 0 \\ * & 0 & 0 \\ * & 0 & 0 \end{pmatrix}$, y el ideal bilátero generado por e es $M_3(k)$.

- (b) Sea $I \subseteq A$ un ideal a izquierda. Definimos S_I el "subespacio" $e.I \subseteq \begin{pmatrix} * & * & * \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ entonces el ideal generado por S_I (i.e. $M_3(k).S_I$) coincide exactamente con I.
- (c) Los ideales a izquierda de $M_3(k)$ están en correspondencia 1-1 con los subespacios de k^3 . Encuentre los ideales asociados a los subespacios generados respectivamente por (0,0,1), (0,1,0) y (1,0,0).
- (d) Generalización 1: demuestre que los ideales a izquierda de $M_n(k)$ están en correspondencia biyectiva con los subespacios de k^n (con $n \in \mathbb{N}$). Generalización 2: si A es un anillo cualquiera con 1 demuestre que los ideales a izquierda de $M_n(A)$ están en correspondencia biyectiva con los submódulos a izquierda de A^n .
- (13) Sea k un cuerpo y $n \in \mathbb{N}$, los únicos ideales biláteros de $M_n(k)$ son 0 y $M_n(k)$. Si A es un anillo, los únicos ideales biláteros de $M_n(A)$ son de la forma $M_n(I)$ con $I \subseteq A$ un ideal bilátero (sug. si e es una matriz tipo la del ejercicio anterior, entonces para $J \subseteq M_n(A)$, $J \mapsto e.J.e$ da una matriz 'concentrada' en el lugar 11 y establece una biyección entre ideales bilateros de A y de $M_n(A)$). ¿puede haber un morfismo de anillos $M_n(k) \to k$?
- (14) Sea M un A-módulo a derecha y $B = End_A(M)$. Ver que la acción $End_A(M) \times M \to M$ dada por $(f,m) \mapsto f(m)$ define sobre M una estructura de $End_A(M)$ -módulo a izquierda. Además M resulta un $End_A(M)$ A-bimódulo (i.e. las dos estructuras son compatibles). Si $M = A^{n \times 1}$ (o sea A^n visto como "vector columna") es un A-módulo a derecha. Ver que M además es un $M_n(A)$ -módulo a izquierda con la multiplicación usual de matrices. Ver que esta estructura coincide con la definida antes, identificando $End_A(A^n) \simeq M_n(A)$.