Algebra II - Práctica 7

1er. Cuatrimestre 2004

Módulos Artinianos

- (1) (a) \mathbb{Z} y k[x] (k cuerpo) son anillos noetherianos (práctica anterior) pero no artinianos.
 - (b) Si V es un k-espacio vectorial, V es artiniano si y sólo si $dim_k(V) < \infty$.
 - (c) $G_{p^{\infty}}$ es un \mathbb{Z} -módulo artiniano que no es noetheriano.
- (2) Sea A un anillo artiniano, entonces $M_n(A)$ es un anillo artiniano (sug.: usar la caracterización de ideales a izquierda de $M_n(A)$).
- (3) Si A es un dominio integro artiniano entonces A es un cuerpo.
- (4) G un \mathbb{Z} -módulo artiniano entonces G es de torsion. G es noetheriano y artiniano si y sólo si G es finito.
- (5) Sean B, C y D A-módulos, y $0 \to B \to C \to D \to 0$ una S.E.C. de A-módulos, entonces C es artiniano si y sólo si B y D lo son.
- (6) Sea A un submódulo de un módulo B entonces B es artiniano si y sólo si A y B/A lo son.
- (7) Sea $A := \left\{ \begin{pmatrix} d & r \\ 0 & s \end{pmatrix} \mid d \in \mathbb{Q} \text{ y } r, s \in \mathbb{R} \right\}$. Probar que A es un anillo artiniano a derecha pero no a izquierda.
- (8) Sean A y B anillos, y $\psi:A\to B$ un morfismo de anillos suryectivo. Si A es artiniano, B lo es.

1