ÁLGEBRA II

Práctica 4

- 1. Probar que los siguientes conjuntos, con las operaciones definidas tienen estructura de anillo:
 - a) $(A^{n \times n}, +, \cdot)$ (matrices de $n \times n$, A anillo conmutativo).
 - b) $\{f: A \longrightarrow A\}, A \text{ anillo}; (f+g)(a) = f(a) + g(a); (f \cdot g)(a) = f(a) \cdot g(a)$
 - c) $A_1\times\ldots\times A_n;\,A_1,\ldots,A_n$ anillos, suma y producto coordenada a coordenada
 - d) $\{\mathcal{P}(X), \triangle, \cap\}$ con X conjunto
 - e) $\mathbb{Z}[G] = \{ \sum_{g \in G} a_g \cdot g / a_g \in \mathbb{Z} \}$ con $\sum a_g \cdot g + \sum b_g \cdot g = \sum (a_g + b_g) \cdot g ; \sum a_g \cdot g . \sum a_h \cdot h = \sum a_g b_h g h$
 - $f) \ \ \mathbb{Z}[\sqrt{d}] = \{a + b\sqrt{d} \, : \, a,b \in \mathbb{Z}\} \ \ \text{con} \ \ d \in \mathbb{Z} \, , \ \ d \ \ \text{libre de cuadrados}.$

Decidir cuáles son commutativos, cuáles son dominios íntegros, anillos de división, cuerpos.

- 2. Dar ejemplos de
 - a) anillo de división que no sea cuerpo.
 - b) anillo que no sea íntegro.
 - c) anillo íntegro que no sea de división.
 - d) dominio íntegro que no sea dominio principal.
- 3. ¿Existe algún producto · que haga de $(\mathbb{Z}_n, +, \cdot)$ un cuerpo? (+ es la suma usual)
- 4. Sea $A = \mathcal{C}[0,1]$ el anillo de funciones reales continuas definidas en [0,1].
 - a) ¿Hay divisores de cero en A?
 - b) ¿Cuáles son los elementos inversibles en A?
- 5. Sea A un anillo con identidad 1
 - a) Probar que $\mathcal{U}(A) = \{a \in A : a \text{ es inversible}\}\$ es un grupo multiplicativo.
 - b) Hallar $\mathcal{U}(\mathbb{Z}_m)$ para m = 3, 4, 5, 6, 8.
 - c) ¿Cuál es el orden de $\mathcal{U}(\mathbb{Z}_m)$?
 - d) $\mathrm{Es}\ \mathcal{U}(\mathbb{Z}_8) \simeq \mathcal{U}(\mathbb{Z}_5)$?
- 6. Consideremos el anillo $\mathbb{Z}[\sqrt{3}]$

- a) Probar que en $\mathbb{Z}[\sqrt{3}]$ la escritura es única. Es decir que si $a+b\sqrt{3}=c+d\sqrt{3}$, entonces a=c y b=d.
- b) Sea $N: \mathbb{Z}[\sqrt{3}] \longrightarrow \mathbb{Z}$ la función (norma) definida por $N(a+b\sqrt{3})=a^2-3b^2$. Probar que es multiplicativa.
- c) Probar que $2 + \sqrt{3}$ es una unidad.
- d) Probar que $z \in \mathbb{Z}[\sqrt{3}]$ es una unidad si, y sólo si, N(z) = 1 ó N(z) = -1.
- e) Hallar otras unidades de $\mathbb{Z}[\sqrt{3}]$.
- 7. Caracterizar el grupo de unidades de:
 - \mathbb{Z} , \mathbb{K} cuerpo, $\mathbb{Z}[i]$, $\mathbb{Z}[\sqrt{-5}]$, B[X] con B dominio integro.
- 8. Sea D un dominio de integridad finito. Probar que D es un cuerpo.
- 9. Hallar todos los ideales primos de \mathbb{Z} .
- 10. Probar que si \mathbb{K} es un cuerpo entonces $\mathbb{K}[X]$ es un dominio principal. ¿Es $\mathbb{Z}[X]$ un dominio principal?
- 11. Sea $f: A \longrightarrow B$ un morfismo de anillos. Probar que
 - a) im(f) es un subanillo de B
 - b) $\ker(f)$ es un ideal de A
 - c) $A/\ker(f) \simeq \operatorname{im}(f)$ (como anillos)
- 12. Sea A un anillo. Probar que A es un anillo de división si, y sólo si, los únicos ideales a izquierda de A son 0 y A.
- 13. Sean A un anillo conmutativo e \mathcal{I} un ideal de A. Probar que \mathcal{I} es un ideal primo de A si y sólo si A/\mathcal{I} es un dominio íntegro.
- 14. Probar que en un anillo conmutativo todo ideal maximal es primo.
- 15. Sea A un anillo conmutativo y sea \mathcal{M} un ideal de A. Probar que \mathcal{M} es maximal si y sólo si A/\mathcal{M} es un cuerpo.
- 16. Sea \mathbb{K} un cuerpo y sea $f \in \mathbb{K}[X]$. Probar que $\mathbb{K}[X]/< f>$ es un cuerpo, si y sólo si, f es irreducible en $\mathbb{K}[X]$. ¿Sigue valiendo esto si se reemplaza el cuerpo \mathbb{K} por un anillo conmutativo A?
- 17. Probar que $\mathbb{Z}[X]/< X^2+1> \simeq \mathbb{Z}[i]$

- 18. Sea \mathbb{K} un cuerpo. Probar que los únicos ideales biláteros de $M_2(\mathbb{K})$ son 0 y $M_2(\mathbb{K})$. ¿Es $M_2(\mathbb{K})$ un anillo de división?
- 19. Sea A un anillo. Probar que existe un subanillo $B\subset A$ tal que $B\simeq \mathbb{Z}/n\mathbb{Z}$ para algún $n\in\mathbb{N}_0$.
- 20. Probar que $\mathbb{Z}[i]/<1+i>\simeq\mathbb{Z}_2$ y caracterizar el anillo cociente $\mathbb{Z}[i]/<1+2i>$.
- 21. Probar que si \mathcal{I} es un ideal primo de $\mathbb{Z}[X]$ entonces $\mathcal{I} \cap \mathbb{Z}$ es un ideal primo de \mathbb{Z} .
- 22. Sea $p \in \mathbb{Z}$ un primo. Probar que $\mathbb{Z}[X]/ \simeq \mathbb{Z}_p[X]$.
- 23. Sean A un anillo e \mathcal{I} un ideal de A. Probar que hay una correspondencia biyectiva entre los ideales de A/\mathcal{I} y los ideales de A que contienen a \mathcal{I} .
- 24. Sea $p \in \mathbb{Z}$ un primo. Probar que es un ideal primo en $\mathbb{Z}[i]$ si, y sólo si, -1 no es un cuadrado en \mathbb{Z}_p .
- 25. Probar que todo morfismo de anillos que sale de un cuerpo es inyectivo.
- 26. Hallar las unidades de $\mathbb{Z}[X]/< X^3 >$.
- 27. Probar que si $f: \mathbb{R} \longrightarrow \mathbb{R}$ es un morfismo de cuerpos entonces f = id.
- 28. Hallar todos los morfismos de cuerpos $f:\mathbb{C}\longrightarrow\mathbb{C}$ que satisfacen $f(\mathbb{R})\subseteq\mathbb{R}$.