Álgebra II

Primer Cuatrimestre 2005 Práctica 6

- 1) Sea $0 \to M \to N \to P \to 0$ una sucesión exacta de A-módulos. Probar:
 - a) Si N es de tipo finito, entonces P es de tipo finito.
 - b) Si M y P son de tipo finito, entonces N es de tipo finito.
 - c) N es noetheriano (artiniano) si y sólo si M y P son noetherianos (artinianos).
- 2) Sea para $m \in \mathbb{Z}$ la sucesión exacta de \mathbb{Z} -módulos

$$0 \to m\mathbb{Z} \hookrightarrow \mathbb{Z} \to \mathbb{Z}/m\mathbb{Z} \to 0.$$

Aplicarle los funtores $\operatorname{Hom}(-, M)$ y $\operatorname{Hom}(M, -)$ para $M = \mathbb{Z}, \mathbb{Z}_m, \mathbb{Z}_n$ (*n* coprimo con *m*) y estudiar la exactitud de las sucesiones que resultan.

- 3) Sea K un cuerpo y V un K-espacio vectorial. Probar que V es inyectivo y proyectivo.
- 4) Sea A dominio y M un A-módulo divisible sin torsión. Probar que M es inyectivo.
- 5) Sea A un dominio de ideales principales y M un A-módulo divisible, entonces M es inyectivo.
- 6) Sea $A = \mathbb{Z} \times \mathbb{Z}$ el anillo producto. Sea $M = \{(m, 0) : m \in \mathbb{Z}\}$. Probar que M es un A-módulo proyectivo, pero que no es libre.
- 7) Calcular los divisores elementales de los siguientes grupos abelianos:
 - a) $\mathbb{Z}_4 \oplus \mathbb{Z}_6 \oplus \mathbb{Z}_9$.
 - b) $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_8 \oplus \mathbb{Z}_{14}$.
 - c) $\mathbb{Z}_2 \oplus \mathbb{Z} \oplus \mathbb{Z}_{49} \oplus \mathbb{Z}$.
 - d) $\mathbb{Z}_{12} \oplus \mathbb{Z}_{21} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}_{20} \oplus \mathbb{Z}_9 \oplus \mathbb{Z}_7$.
 - e) G un grupo abeliano de orden 36 que tiene exactamente 2 elementos de orden 3 y que no tiene elementos de orden 4.
 - f) G un grupo abeliano de orden 225 que tiene por lo menos 40 elementos de orden 15 y tal que todo subgrupo de orden 9 es isomorfo a $\mathbb{Z}_3 \oplus \mathbb{Z}_3$.
- 8) Determinar los divisores elementales de los grupos abelianos definidos por generadores y relaciones siguientes:
 - a) generadores $\{e_1, e_2\}$, relación $3e_1 = 4e_2$.
 - b) generadores $\{e_1, e_2, e_3\}$, relaciones $2e_1 + 2e_2 + 2e_3 = 0$ y $3e_1 = 6e_3$.
 - c) generadores $\{e_1, e_2, e_3\}$, relaciones $3e_1 = e_2$ y $e_2 = 3e_3$.
 - d) generadores $\{e_1, e_2, e_3\}$, relaciones $2e_1 + 3e_2 = 0$ y $2e_1 + 4e_3 = 0$.

- e) generadores $\{e_1, e_2, e_3\}$, relaciones $e_1 = 3e_2$ y $e_1 = 3e_3$.
- f) generadores $\{e_1, e_2, e_3\}$, relaciones $3e_1 = -e_3$ y $3e_1 = 3e_3 8e_2$.
- 9) Determinar todas las clases de isomorfismo de grupos abelianos de ordenes 8, 16, 18, 100, 180 y 210 respectivamente.
- 10) Sea A un grupo abeliano de orden n.
 - a) Si r es un divisor de n entonces A posee subgrupos de orden r. Si r es primo entonces A posee elementos de orden r.
 - b) Si $a \in A$ posee orden maximal (entre los órdenes de elementos de A) entonces a genera un sumando directo de A.
 - c) Si n es libre de cuadrados entonces A es cíclico.
- 11) Sean A, B, C grupos abelianos de tipo finito.
 - a) $A \oplus A \cong B \oplus B$ implies $A \cong B$.
 - b) $A \oplus C \cong B \oplus C$ implies $A \cong B$.
 - c) Las afirmaciones análogas a a) y b) para módulos finitamente generados sobre anillos más generales que $\mathbb Z$ son falsas.
- 12) Determinar todas las clases de isomorfismo de módulos sobre $\mathbb{C}[t]$ que como espacio vectorial complejo tienen dimensión 2. Análogo problema para dimensiones 3 y 4. Determinar todas las formas canónicas de Jordan de matrices complejas de $n \times n$ para n = 2, 3 y 4.
- 13) Hallar la forma normal racional y la forma normal de Jordan de un endomorfismo nilpotente.
- 14) Hallar la forma normal racional y la forma normal de Jordan de las siguientes matrices:

$$a) \quad \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}. \qquad b) \quad \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}. \qquad c) \quad \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & -2 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & -1 \end{pmatrix}.$$

- 15) Sea $J(\lambda, n) \in \mathbb{C}^{n \times n}$ un bloque de Jordan de autovalor λ . Calcular la forma normal racional de las matrices con forma normal de Jordan:
 - a) J = diag(J(-3,2), J(-3,2), J(-3,1), J(2,4), J(2,3), J(2,1)).
 - b) J = diag(J(-1,3), J(0,2), J(0,2), J(1,2), J(1,1)).
- 16) Sea C(p) la matriz compañera del polinomio mónico $p(t) \in \mathbb{C}[t]$. Calcular la forma normal de Jordan de las matrices cuya forma normal racional es
 - a) $C = \operatorname{diag}(C((t+2)(t-2)), C((t+2)t^2(t-2)), C((t+2)^2t^2(t-2)^2)).$
 - b) $C = \operatorname{diag}(C(t+4)), C((t+4)^3(t+1)(t-2)^2), C((t+4)^4(t+1)(t-2)^2)).$

17) Encontrar las posibles formas normales racionales y las posibles formas normales de Jordan para una matriz $a \in \mathbb{C}^{n \times n}$ tal que

a)
$$\mathcal{X}_a(t) = (t-2)^4(t-3)^2$$
, $m_a(t) = (t-2)^2(t-3)^2$.

b)
$$\mathcal{X}_a(t) = (t-3)^3(t-5)^6$$
, $m_a(t) = (t-3)^2(t-5)^3$.

18) Dar ejemplos de matrices $a, b \in M(n \times n, K)$ no semejantes, con el mismo polinomio minimal y el mismo polinomio característico.

(Def.: se dice que a y b son semejantes si existe $u \in M(n \times n, K)^*$ tal que $a = u.b.u^{-1}$; equivalentemente, los K[t]-módulos asociados K_a^n y K_b^n son isomorfos).

19) Sea A un dominio de ideales principales con cuerpo de fracciones K y sea M un A-módulo de tipo finito.

Denotamos $M^* = \operatorname{Hom}_A(M, A)$ y $M' = \operatorname{Hom}_A(M, K/A)$ (*-dual y '-dual de M).

- a) M es de torsión sii $M^* = 0$ sii $M \cong M'$.
- b) M es sin torsión sii M es libre sii $M \cong M^*$.
- c) Dado un submódulo $S \subset M$ y $m \in M S$, existe $\varphi \in M'$ tal que $\varphi(S) = 0$ y $\varphi(m) \neq 0$. En particular, M' = 0 sii M = 0.
- d) Sean $\alpha: M \to M^{**}$ y $\beta: M \to M''$ los morfismos naturales. Entonces $\ker(\alpha) = \operatorname{t}(M)$ y $\ker(\beta) = 0$. Si M es libre entonces α es un isomorfismo. Si M es de torsión entonces β es un isomorfismo.