ALGEBRA III Práctica 2

Nota: $f(\alpha, K) = irr(\alpha, K)$ denota el polinomio minimal de α sobre el cuerpo K y ξ_n denota una raíz n-ésima primitiva de la unidad.

- 1. Sea E/K una extensión y $\alpha \in E$ algebraico sobre K. Dada F/K una subextensión de E/K, probar que $f(\alpha, F)/f(\alpha, K)$. Dar ejemplos con $f(\alpha, F) = f(\alpha, K)$ y con $f(\alpha, F) \neq f(\alpha, K)$.
- 2. Calcular:
 - (i) $[\mathbb{Q}[\sqrt[3]{3}, \sqrt[5]{7}] : \mathbb{Q}]$
 - (ii) $\left[\mathbb{Q}\left[\sqrt{2},i\right]:\mathbb{Q}\right]$
 - (iii) $\left[\mathbb{Q}\left[\sqrt[4]{2}\right]:\mathbb{Q}\left[\sqrt{2}\right]\right]$
- 3. Calcular $f(\sqrt[4]{2}, \mathbb{Q})$; $f(\sqrt[4]{2}, \mathbb{Q}[\sqrt[4]{2}])$; $f(\sqrt[4]{-1}, \mathbb{Q})$; $f(\sqrt[4]{-1}, \mathbb{Q}[i])$; $f(w, \mathbb{R})$ $(w \in \mathbb{C})$; $f(\cos(\frac{2\pi}{7}), \mathbb{Q})$.
- 4. (i) Calcular $[\mathbb{Q}[\sqrt{2}, \sqrt{3}] : \mathbb{Q}]$ y $[\mathbb{Q}[\sqrt{2} + \sqrt{3}] : \mathbb{Q}]$ ¿Qué relación hay entre las dos extensiones?
 - (ii) Calcular $[\mathbb{Q}[\sqrt[3]{2},\sqrt{3}]:\mathbb{Q}]$. Hallar $a\in\mathbb{C}$ tal que $\mathbb{Q}[a]=\mathbb{Q}[\sqrt[3]{2},\sqrt{3}]$.
- 5. Probar que $\mathbb{Q}\left[\sqrt{2-\sqrt{3}}\right] = \mathbb{Q}\left[\sqrt{2+\sqrt{3}}\right]$. Calcular $\left[\mathbb{Q}\left[\sqrt{2-\sqrt{3}}\right]:\mathbb{Q}\right]$.
- 6. Sea K un cuerpo de característica \neq 2. Caracterizar las extensiones cuadráticas (i.e. de grado 2) de K.
- 7. Sea A un dominio de integridad y L un subcuerpo de A tal que todo elemento de A es raíz de un polinomio no nulo con coeficientes en L. Probar que A es un cuerpo.
- 8. Sea a_b una raíz del polinomio $X^2 + bX + b^2$ ($b \in \mathbb{Q}$). Describir las posibles extensiones $\mathbb{Q}[a_b]/\mathbb{Q}$ y determinar $[\mathbb{Q}[a_b]:\mathbb{Q}]$.
- 9. Sea F/K una extensión de grado impar. Probar que si F=K[u] entonces $F=K[u^2]$.
- 10. Sea $n \in \mathbb{N}$, (n;6) = 1. Sea F/\mathbb{Q} una subextensión de \mathbb{C}/\mathbb{Q} de grado n. Probar que $[F[\sqrt[3]{2},i]:F] = 6$.
- 11. Sean L/K y M/K dos subextensiones de grado finito de una extensión F/K. Probar que si [L.M:K] = [L:K].[M:K] entonces $L \cap M = K$. ¿Vale la recíproca?
- 12. Sea $a \in \mathbb{C}$ una raíz de $X^3 2X + 2$ y sea $b = a^2 a$. Probar que $\mathbb{Q}[a] = \mathbb{Q}[b]$ y calcular $f(b, \mathbb{Q})$.
- 13. (i) Sea p un primo positivo. Calcular $f(\xi_p, \mathbb{Q})$. Deducir $[\mathbb{Q}[\xi_p] : \mathbb{Q}]$.
 - (ii) Calcular $f(\xi_6, \mathbb{Q})$

- (iii) Probar que $f(\xi_n, \mathbb{Q}) = 1 + X + X^2 + \ldots + X^{n-1}$ si y sólo si n es primo.
- 14. Probar que $f(\xi_5 + \xi_5^4, \mathbb{Q}) = X^2 + X 1$. Deducir que $\mathbb{Q}[\xi_5]$ admite una subextensión cuadrática y caracterizarla.
- 15. Sea p un primo positivo y $a \notin \mathbb{Q}^p$.
 - (i) Probar que $f(\sqrt[p]{a}, \mathbb{Q}) = X^p a$.
 - (ii) Sea $K \subseteq \mathbb{C}$ el mínimo cuerpo que contiene a todas las raíces de $f(\sqrt[p]{a}, \mathbb{Q})$. Caracterizar K y calcular $[K : \mathbb{Q}]$ y $[K : \mathbb{Q}[\sqrt[p]{a}]]$.
- 16. (i) Probar que un cuerpo algebraicamente cerrado es infinito.
 - (ii) Sea E/K una extensión algebraica. Calcular el cardinal de E en función del cardinal de K.
 - (iii) Probar que hay no numerables elementos trascendentes en \mathbb{R}/\mathbb{Q} .
- 17. Sea $\left\{p_i\right\}_{i\in\mathbb{N}}$ una numeración de los primos positivos.
 - (i) Calcular $[\mathbb{Q}[\sqrt{p_1}, \sqrt{p_2}, \dots, \sqrt{p_n}] : \mathbb{Q}]$. Calcular la cantidad de subextensiones de grado 2 que tiene esta extensión.
 - (ii) Deducir de lo anterior $[\mathbb{Q}[\sqrt{p_i}]_{i\in\mathbb{N}}:\mathbb{Q}]$.
 - (iii) $\exists \alpha_1, \ldots, \alpha_n \in \mathbb{C}$ tal que $\mathbb{Q}[\sqrt{p_i}]_{i \in \mathbb{N}} = \mathbb{Q}[\alpha_1, \ldots, \alpha_n]$?
- 18. Sea E/K una extensión algebraica de grado infinito. Probar que existen subextensiones de grado finito arbitrariamente grande. ¿Qué pasa si E/K es puramente trascendente?.
- 19. Sea K un cuerpo y sea t trascendente sobre K.
 - (i) Describir $K(t)/K(t^3)$
 - (ii) Calcular $f(t, K(t^n))$
- 20. Sea E/K una extensión y sean $x, y \in E$. Determinar si las siguientes afirmaciones son verdaderas o falsas. Justificar.
 - (i) Si $x \in y$ son trascendentes sobre K entonces x + y ó xy es trascendente sobre K.
 - (ii) Si x es trascendente e y es algebraico sobre K entonces x + y es trascendente sobre K.
 - (iii) Si x es trascendente e y es algebraico sobre K entonces xy es trascendente sobre K.
- 21. Sea K un cuerpo y $f \in K[X]$ no constante. Probar que [K(X):K(f)]=grf.
- 22. (i) Sea $d \in \mathbb{Z}$ libre de cuadrados. Probar que hay sólo dos morfismos de cuerpos $f : \mathbb{Q}[\sqrt{d}] \to \mathbb{C}$ y que en cada caso $f(\mathbb{Q}[\sqrt{d}]) \subseteq \mathbb{Q}[\sqrt{d}]$ (de hecho, vale la igualdad).
 - (ii) Sea d libre de cubos. Probar que hay sólo tres morfismos de cuerpos $f: \mathbb{Q}[\sqrt[3]{d}] \to \mathbb{C}$ pero en general $f(\mathbb{Q}[\sqrt[3]{d}]) \not\subseteq \mathbb{Q}[\sqrt[3]{d}]$.
 - (iii) Sea d como en el ítem anterior. Considerar $\mathbb{Q}[\xi_3, \sqrt[3]{d}]$. ¿Qué pasa ahora?

Ejercicio para entregar el 2-4-02

Pruebe que $\mathbb{Q}_{alg} = \{r \in \mathbb{C} : r \text{ es algebraico sobre } \mathbb{Q}\}$ es una extensión algebraica de \mathbb{Q} que no es finita.