ALGEBRA III Práctica 6

- 1. Sea C/\mathbb{Z}_p una clausura algebraica y sean F_{p^m} y F_{p^n} los cuerpos de p^m y p^n elementos en C. Probar que $F_{p^m} \subseteq F_{p^n} \Leftrightarrow m/n$
- 2. Sea $F_q = F_{p^n}$ un cuerpo finito y F_{q^d} una extensión de F_q . Probar que F_{q^d} es normal y separable sobre F_q y que $\operatorname{Gal}(F_{q^d}/F_q)$ es cíclico de orden d generado por el automorfismo $\phi_q = (\phi_p)^n$, donde ϕ_p es el automorfismo de Frobenius.
- 3. Sea K un cuerpo de q elementos (es claro que $q = p^r$)
 - (i) Sea $f \in K[X]$ irreducible. Probar que f divide a $X^{q^n} X$ sii gr f divide a n.
 - (ii) Probar que $X^{q^n} X = \prod_{d|n} (\prod f_d)$, donde el producto de adentro recorre todos los polinomios irreducibles mónicos de grado d en K[X].
 - (iii) Deducir que $q^n = \sum_{d|n} d.u(d)$, donde u(d) es la cantidad de polinomios irreducibles mónicos de grado d.
 - (iv) Calcular u(d) para el caso en que d es una potencia de un primo.
 - (v) Calcular la cantidad de polinomios de grado 3 y 4 mónicos e irreducibles que hay en un cuerpo de 2^{12} y 3^{12} elementos.
- 4. Sea K un cuerpo, sea $g: \mathbb{Z} \to K$ el único morfismo de anillos con unidad y sea $\overline{g}: \mathbb{Z}[X] \to K[X]$ el morfismo de anillos inducido por g (ie: $\overline{g}(\sum a_i X^i) = \sum g(a_i) X^i$).

Como $\phi_n \in \mathbb{Z}[X]$, podemos pensar a ϕ_n en K[X] vía \overline{g} .

- (i) Probar que:
 - a. $\phi_n \in K[X]$ es mónico de grado $\varphi(n)$
 - b. $X^{n} 1 = \prod_{d|n} \phi_{d}$ en K[X].
 - c. Si $car K \neq 0$ y n es coprimo con car K entonces ϕ_n tiene todas sus raíces simples.
- (ii) Sea C/K una clausura algebraica y $\xi \in C$ una raíz primitiva n-ésima de 1 (i.e. $\xi^n = 1$ y $\xi^r \neq 1 \ \forall r < n$). Si n es coprimo con car K, probar que:
 - a. $\xi \in C$ es raíz de ϕ_n sii ξ es raíz n-ésima primitiva de 1.
 - b. La cantidad de raíces n-ésimas primitivas de 1 en C es $\varphi(n)$.
 - c. Sea ξ_n una primitiva n-ésima de 1 en C, entonces $\xi \in C$ es otra raíz primitiva n-ésima de 1 sii $\xi = \xi_n^j$ para algún $1 \le j \le n$ tal que (j; n) = 1.
- 5. Sea K un cuerpo de característica positiva y $n \in \mathbb{N}$ coprimo con la característica de K. Sea C/K una clausura algebraica y $\xi_n \in C$ una raíz n-ésima primitiva de 1. Probar que si ϕ_n es irreducible en K[X], entonces $K(\xi_n)/K$ es separable, normal y de grado $\varphi(n)$ y que $G(K(\xi_n)/K) \simeq \mathcal{U}_n$.
- 6. Sea n un natural impar y K cuerpo de característica distinta a 2. Probar que K contiene una raíz n-ésima primitiva de 1 sii contiene una raíz 2n-ésima primitiva de 1.

- 7. (i) Sea E/\mathbb{Q} una extensión de grado finito. Probar que existe sólo un número finito de raíces de la unidad en E.
 - (ii) Determinar qué raíces de la unidad contienen $\mathbb{Q}[i]$, $\mathbb{Q}[\sqrt{2}]$, $\mathbb{Q}[\sqrt{-2}]$, $\mathbb{Q}[\sqrt{2},\sqrt{-3}]$, $\mathbb{Q}(\xi_9)$.
- 8. Sean E/K y F/K dos extensiones ciclotómicas de índices m y n respectivamente, contenidas en una misma clausura algebraica C/K y tales que (m;n)=1. Probar que E.F/K es ciclotómica de índice mn. Probar además que si $K=\mathbb{Q}$, entonces $E\cap F=\mathbb{Q}$.
- 9. Sea K cuerpo finito de q elementos y E/K extensión ciclotómica de índice n, con n coprimo con la característica de K.
 - (i) Probar que E es un cuerpo de q^m elementos, donde m es el menor natural tal que $n|q^m-1$
 - (ii) ϕ_n es irreducible en K[X] sii la clase de q en \mathcal{U}_n tiene orden $\varphi(n)$.
 - (iii) Si $p \neq 2, 3$ entonces ϕ_{12} es reducible en $\mathbb{Z}_p[X]$.
 - (iv) Probar que, para todo $p, X^4 + 1$ es reducible en $\mathbb{Z}_p[X]$.
- 10. Probar que \mathbb{Z}_3 no contiene raíces 13-ésimas de la unidad distintas de 1. Probar también que si E/\mathbb{Z}_3 es ciclotómica de índice 13, entonces su grado es $3 < \varphi(13)$.
- 11. (i) Sea E/\mathbb{Q} una extensión cuadrática. Probar que ϕ_n es reducible en E[X] sii $E \subseteq \mathbb{Q}(\xi_n)$.
 - (ii) Determinar las extensiones cuadráticas E/\mathbb{Q} tales que ϕ_{12} es irreducible en E[X]. Idem para ϕ_8 y ϕ_{10} .
- 12. ¿Para qué valores de n es ϕ_n irreducible sobre un cuerpo de 9 elementos? ¿Para qué valores de n es ϕ_6 irreducible sobre un cuerpo de p^n elementos?
- 13. Sea K cuerpo y $n \in \mathbb{N}$ coprimo con la característica de K. Probar que los factores irreducibles de ϕ_n sobre K son todos de igual grado.
- 14. Sea K un cuerpo de 27 elementos. Factorizar ϕ_7 como productos de irreducibles en K[X].
- 15. Sea t trascendente sobre \mathbb{Z}_7 y sea $K = \mathbb{Z}_7(t)$. Hallar la factorización de ϕ_9 como producto de irreducibles en K[X].

Ejercicio para entregar el 30-05-02

Sean $p_1, \ldots, p_n \in \mathbb{Z}$ primos distintos y sea

$$f_n(x) = \prod_{(\varepsilon_1, \dots, \varepsilon_n) \in \{-1, 1\}}^n (x - \sum_{i=1}^n \varepsilon_i \sqrt{p_i})$$

- 1. Probar que $\mathbb{Q}[\sqrt{p_1},\ldots,\sqrt{p_n}]/\mathbb{Q}$ es normal y que $\mathrm{Gal}(\mathbb{Q}[\sqrt{p_1},\ldots,\sqrt{p_n}]/\mathbb{Q})$ es $(\mathbb{Z}_2)^n$.
- 2. Probar que f_n es irreducible en $\mathbb{Q}[x]$.
- 3. Probar que $f_n \in \mathbb{Z}[x]$ (hint: $f_n(x) = f_{n-1}(x \sqrt{p_n})f_{n-1}(x + \sqrt{p_n})$).
- 4. Sea $\overline{f_n} \in \mathbb{Z}_q[x]$, q primo. Probar que $\overline{f_n}$ se factoriza con factores de grado a lo sumo 2 en $\mathbb{Z}_q[x]$.