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1. Introduction

Consider the polynomial f(X) = X4 −X2 − 1 ∈ Z[X]. Suppose that we want to
show that this polynomial is irreducible. We reduce f modulo a prime p and hope
to show that it is irreducible as an element of Z/pZ[X], so then f is irreducible in
Z[X]. We see that f ≡ (X2 + X + 1)2 (mod 2)—let us disregard the exceptional
cases where a multiple root occurs, those primes dividing the discriminant ∆(f).
Modulo 3, however, we see that f is irreducible because it has no root in F9.
Sometimes for a polynomial one can combine information gleaned from several
primes: it would suffice, for example, to show that our polynomial f is the product
of a linear and cubic factor modulo one prime and the product of 2 quadratic
factors modulo another.

We are then posed with the question: given a polynomial f , among the factor-
ization patterns of f modulo many primes (throwing out the cases when a double
factor occurs), how often does each occur? We will be able to obtain an answer to
this question as an application of the Chebatorev density theorem.

As an illustration, we gather a bit of data. Along with the polynomial X4 −
X2 − 1, let us also consider X4 −X − 1. Consider the following:

f p0 ∆(f) #{p ≤ p0 : p - ∆(f), p prime}
X4 −X2 − 1 7933 −24 · 52 1000
X4 −X − 1 7927 −283 1000

We then tabulate how often each factorization pattern occurs among all primes
up to p0:

f 4 1, 3 2, 2 1, 1, 2 1, 1, 1, 1
X4 −X2 − 1 254 0 379 251 116
X4 −X − 1 258 337 117 253 35

For example, there are 254 primes p up to 7933 such that f = X4 − X2 − 1
remains irreducible modulo p, and 251 primes such that f splits into two linear
factors and one quadratic factor. Note that the pattern 1, 3 does not occur for the
first polynomial because if x is a root, then so is −x.



2 Hendrik Lenstra

Notice that the fractions that occur are very close to much simpler ones. We
might guess that the fraction of each factorization pattern is in fact asymptotically
given by:

f 4 1, 3 2, 2 1, 1, 2 1, 1, 1, 1
X4 −X2 − 1 1/4 0 3/8 1/4 1/8
X4 −X − 1 1/4 1/3 1/8 1/4 1/24

The Chebotarev density theorem will allow us to explain this striking phenome-
non?

2. Frobenius

We begin by looking at the Frobenius element. In the case of an abelian extension
K ⊂ L, we have an Artin symbol A(p) ∈ Gal(L/K) for primes p - ∆L/K , with the
unique property that for all α ∈ OL,

A(p)(α) ≡ α#OK/p (mod pOL).

This element A(p) is often called the Frobenius at p.
If you drop the condition that L/K is abelian and insist only that it be a

Galois extension with Galois group G = Gal(L/K), then the definition of the Artin
map depends on a choice of prime q lying over the prime p. Upon this choice, when
p - ∆L/K , there is a unique Frobq ∈ G such that for all α ∈ OL,

Frobq(α) ≡ α#OK/p (mod q).

This really does depend on the choice of q: given another choice q′ | p, there is
an element σ ∈ Gal(L/K) such that q′ = σ(q), and we then see that Frobq′ =
σ Frobq σ−1. In this case, we must treat not just the elements themselves but the
entire conjugacy class.

We define the Frobenius symbol of p in L/K to be the conjugacy class {Frobq :
q | p}. Note that in the case of an abelian group, this set contains only a single
element—though formally the element and the set containing this element are
two different objects, we may identify the two. We will often abuse notation and
denote by Frobp any element of the conjugacy class and then treat it as something
well-defined only up to conjugacy. We also denote Frobp by σp.

The Frobenius element has several good properties. It restricts well to sub-
fields: if K ⊂ L and L ⊂ M are Galois extension of fields, then σp ∈ Gal(M/K)
maps by restriction to σp ∈ Gal(L/K).

Knowledge of σp also allows us to control the decomposition of p in every
subfield. Given a subextension K ⊂ E ⊂ L, not necessarily Galois, write pOE =∏

q|p q. Since p is unramified, the decomposition of p is given by the sequence of
residue class degrees f(q/p). The Frobenius symbol tells you what they are: let
E = LH , fixed under the subgroup H ⊂ G. Then:
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Fact 2.1. The decomposition type of p in OE (i.e. the ‘factorization pattern’, which
is a partition of the degree [E : K]) is equal to the cycle structure of σp acting on
G/H, where E = LH .

Note that G/H is a set of [E : K] cosets. It comes with an action of G, hence
a cycle structure of σp on this set. Note that this cycle structure only depends on
the conjugacy class of σp, which is an elementary fact from permutation theory.

Let E = K(α), f ∈ OK [X] its minimal polynomial, and assume that p -
∆(f). Then we have a very explicit description of the fact. On the one hand,
the factorization pattern above is nothing other than the factorization pattern of
f mod p in (OK/p)[X]. On the other hand, since α generates L over K, we see that
for any τ , τα = α if and only if τ ∈ H, and τ1α = τ2α if and only if τ1H = τ2H; so
instead of the cycle structure on G/H, we may instead consider the cycle structure
on the K-conjugates of α in L (namely, the zeros of f in L).

By concatenating, we can take the product of any distinct irreducible poly-
nomials: we still have the fact that the factorization pattern of f modulo p is the
same as the cycle structure of σp acting on the set of roots of f .

3. The Chebotarev Density Theorem

We now ask: given an element of the Galois group, can it be represented as a
Frobenius of a prime? This is the question which is answered by the following
theorem.

Theorem 3.1 (Chebotarev Density Theorem). Let K ⊂ L be Galois, and let C ⊂
G = Gal(L/K) be a conjugacy class. Then

{p : p a prime of K, p - ∆L/K , σp ∈ C}

has density #C/#G.

(In particular, this ratio is always > 0, so there always exist such primes.)
If S is a set of primes of K, then we define the (natural) density of S to be

d(S) = lim
x→∞

#{p : (#OK/p) ≤ x, p ∈ S}
#{p : (#OK/p) ≤ x, p prime}

if this limit exists. If the natural density exists, then it is actually equal to the
(analytic) density

dan(S) = lim
s→1+

∑
p∈S

1
#(OK/p)s∑

p prime

1
#(OK/p)s

.

The converse is not true, however, there are cases where the analytic density exists
but the natural density does not. However, the Chebotarev Density Theorem is
valid with either notion of density.
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Therefore to explain the factorization data we found above, we must under-
stand the conjugacy classes of G. For example, the factorization pattern 1, 1, 1, 1
occurs when σp is the identity, which by the theorem occurs with frequency 1/#G.
Therefore we guess that in the first case #G = 8 and in the second #G = 24 = 4!.
We see then that the Galois group of X4 −X − 1 must be S4, and for this group
there are six 4-cycles, occurring with frequency 6/24 = 1/4, eight 3-cycles, with
frequency 8/24 = 1/3, and so on. For X4−X2− 1, we have the Sylow 2-subgroup
of S4, namely, D8.

Indeed, this theorem goes both ways: if you know the densities, you can get
information about the Galois group, and if you know the group, you can predict
the densities that occur by computing the set of conjugacy classes of the group.

If you apply this theorem in the abelian case, and combine the Chebotarev
density theorem with the classification of abelian extensions that comes from Ga-
lois theory, then you get statements that are quite independent of the extension L.
For example, consider the extension Q(ζm) ⊃ Q. We have the Galois group G ∼=
(Z/mZ)∗, by the isomorphism σp ↔ (p mod m). For any a mod m ∈ (Z/mZ)∗,
we see from the Chebotarev density theorem that {p : p ≡ a mod m} has density
1/φ(m), a statement which is a bit stronger than Dirichlet’s theorem on primes in
arithmetic progression.

We would like to generalize this to the setting of ray classes for a general
algebraic number field, which leads to the description of cycles and the so-called
Existence theorem, as discussed elsewhere.

Sometimes the Chebotarev density theorem applies to certain sets of primes,
and sometimes not. Consider the set of odd primes p such that 2p−1 ≡ 1 (mod p2);
we do not know if it is finite or even cofinite, and is unlikely that one can apply the
Chebotarev density theorem. Instead, we might consider for any quadratic form
aX2 + bXY + cY 2 = f ∈ Z[X, Y ] the set {p : ∃ x, y ∈ Z, p = f(x, y)}. We look at
the number field E = Q(

√
D), where D = b2 − 4ac. Assume D is a fundamental

discriminant: then we consider E in its Hilbert class field H(E). The structure of
the group G = Gal(H(E)/Q) is under control, as we know ClE = Gal(H(E)/E),
and of course Gal(E/Q) = Z/2Z. Therefore the primes occur with either frequency
1/(2h) or 1/h, where h = [H(E) : E] = # ClE .

Exercises

Exercise 7.1. Let f ∈ Z[X] be a non-zero polynomial with the property that the
polynomial (f mod p) ∈ Fp[X] splits completely into linear factors in Fp[X], for
all but finitely many prime numbers p. Prove that f splits completely into linear
factors in Q[X].

Exercise 7.2.
(a) Let G be a group acting transitively on a finite set Ω with #Ω > 1. Prove

that there exists σ ∈ G such that for all ω ∈ Ω one has σω 6= ω.
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(b) Let f ∈ Z[X] be an irreducible polynomial with the property that (f mod
p) has a zero in Fp, for all but finitely many primes p. Prove that f has
degree 1.

Exercise 7.3. Find a monic polynomial f ∈ Z[X] of lowest possible degree such
that (f mod p) has a zero in Fp for all prime numbers p but f has no zero in Z.

Exercise 7.4. Let f ∈ Z[X], f /∈ Z. For a prime number p, let n(p) be the number
of distinct zeros of (f mod p) in Fp. Prove that the average of n(p), taken over all
prime numbers p, is equal to the number of distinct monic irreducible factors of f
in Q[X]. (Your solution should include a rigorous definition of that ‘average’.)

Exercise 7.5. Let K be an algebraic number field, with ring of integers A. Prove
that the number of roots of unity in K is equal to the gcd of all numbers #(A/p)−1,
where p ranges over all prime ideals of A for which A/p has characteristic greater
than 1 + [K : Q].

Exercise 7.6. Let R be the ring
∏

p Fp, with p ranging over the set of all prime
numbers. Prove that R has a maximal ideal m for which the field R/m has char-
acteristic zero and contains an algebraic closure of Q.

Exercise 7.7. Suppose (Sn)∞n=1 is a sequence of sets of prime numbers with the
property that Sn ⊂ Sn+1 for each n. Suppose also that each set Sn has a density
d(Sn). Does it follow that S =

⋃
n Sn has a density equal to supn d(Sn)? Give a

proof or a counterexample.

Exercise 7.8. Let S be the set of prime numbers for which 1/p, when developed as
a decimal fraction, has an odd period length. For example, one has 37 ∈ S because
1/37 = 0.027027027 . . ., and 7 /∈ S because 1/7 = 0.142857142857 . . .. Prove that
S has a density, and compute it.
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