Algebra III

Práctica 2 - Primer cuatrimestre de 2006

Ejercicio 1. Calcular los siguientes polinomios minimales:

- $1. \quad \operatorname{irr}(\sqrt[4]{2},\mathbb{Q}) \quad 2. \quad \operatorname{irr}(\sqrt[4]{2},\mathbb{Q}[\sqrt{2}]) \quad 3. \quad \operatorname{irr}(\sqrt[4]{2},\mathbb{Q}[\sqrt[4]{2}])$
- 4. $\operatorname{irr}(i,\mathbb{Q})$ 5. $\operatorname{irr}(i,\mathbb{Q}[i])$ 6. $\operatorname{irr}(w,\mathbb{R}) \operatorname{con} w \in \mathbb{C}$

Ejercicio 2. Calcular:

1.
$$[\mathbb{Q}[\sqrt{2}, i] : \mathbb{Q}]$$
 2. $[\mathbb{Q}[\sqrt[3]{3}, \sqrt[5]{7}] : \mathbb{Q}]$ 3. $[\mathbb{Q}[\sqrt{2 - \sqrt{3}}] : \mathbb{Q}]$

Ejercicio 3.

- 1. Calcular $[\mathbb{Q}[\sqrt{2}, \sqrt{3}] : \mathbb{Q}]$ y $[\mathbb{Q}[\sqrt{2} + \sqrt{3}] : \mathbb{Q}]$. Deducir que $\mathbb{Q}[\sqrt{2}, \sqrt{3}] = \mathbb{Q}[\sqrt{2} + \sqrt{3}]$.
- 2. Hallar $\alpha \in \mathbb{C}$ tal que $\mathbb{Q}[\alpha] = \mathbb{Q}[\sqrt[3]{2}, \sqrt{3}]$.

Ejercicio 4. Sea K un cuerpo y sea E=K[a] una extensión finita de K. Para cada $\alpha \in E$ definimos $L_{\alpha}: E \to E$ la K-transformación lineal dada por $L_{\alpha}(x) = \alpha x$.

- 1. Probar que $irr(a, K) = \chi_{L_a} = det(xI L_a)$.
- 2. ¿Para cuales $\alpha \in E$ vale que $\operatorname{irr}(\alpha, K) = \chi_{L_{\alpha}}$?

Ejercicio 5. Probar que si E/K es una extensión finita tal que [E:K] es primo, entonces no hay cuerpos intermedios entre E y K.

Ejercicio 6. Sea E/K una extensión algebraica y sea $a \in E$ tal que [K[a] : K] es impar. Probar que $K[a] = K[a^2]$. Mostrar que eso no vale en general si [K[a] : K] es par.

Ejercicio 7. Sea $n \in \mathbb{N}$ coprimo con 6 y sea F/\mathbb{Q} una extensión finita de grado n. Probar que $[F[\sqrt[3]{2},i]:F]=6$.

Ejercicio 8. Sea E/K una extensión finita y sean L_1 y L_2 subextensiones. Probar que:

- 1. Si $[L_1:K]$ y $[L_2:K]$ son coprimos, entonces $[L_1L_2:K] = [L_1:K][L_2:K]$.
- 2. Si $[L_1L_2:K]=[L_1:K][L_2:K]$ entonces $L_1\cap L_2=K$. ¿Vale la recíproca?

Ejercicio 9. Mostrar que el polinomio $X^5 + 6X^3 + 15X^2 + 3$ es irreducible en $\mathbb{Q}[\sqrt{2}, \sqrt{3}][X]$.

Ejercicio 10.

- 1. Sea $p \in \mathbb{N}$ primo. Calcular $\operatorname{irr}(\xi_p, \mathbb{Q})$ y deducir $[\mathbb{Q}[\xi_p] : \mathbb{Q}]$.
- 2. Calcular $irr(\xi_6, \mathbb{Q})$.

Ejercicio 11. Sea $p \in \mathbb{N}$ primo y sea $a \in \mathbb{Q} - \mathbb{Q}^p$.

- 1. Probar que irr $(\sqrt[p]{a}, \mathbb{Q}) = X^p a$.
- 2. Sea $K \subseteq \mathbb{C}$ el menor cuerpo que contiene a todas las raices de $\operatorname{irr}(\sqrt[p]{a}, \mathbb{Q})$. Caracterizar K y calcular $[K : \mathbb{Q}]$ y $[K : \mathbb{Q}[\sqrt[p]{a}]]$.

Ejercicio 12. Sea E/K una extensión algebraica y sea R un subanillo de E que contiene a K. Probar que R es un cuerpo.

Ejercicio 13. Sea $\overline{\mathbb{Q}} = \{x \in \mathbb{C} : x \text{ es algebraico sobre } \mathbb{Q}\}$. Probar que $\overline{\mathbb{Q}}$ es un cuerpo y que es algebraicamente cerrado. ¿Cual es la cardinalidad de $\overline{\mathbb{Q}}$?

Ejercicio 14. Sea E/K una extensión algebraica tal que todo polinomio $f \in K[X]$ se factoriza linealmente en E[X]. Probar que E es algebraicamente cerrado.

Ejercicio 15. Sea K un cuerpo. Sea $A = K[X_f : f \in K[X] \text{ irreducible}]$. Sea $I \subseteq A$ el ideal generado por $\{f(X_f) : f \in K[X] \text{ irreducible}\}$. Sea \mathcal{M} un ideal maximal de A que contiene a I y sea $L = A/\mathcal{M}$. Sea $E = \{x \in L : x \text{ es algebraico sobre } K\}$. Probar que E es un cuerpo algebraicamente cerrado que contiene a E y que E es algebraica.

Ejercicio 16. Sean $p_1, p_2, \ldots, p_n \in \mathbb{N}$ primos distintos. Sea $E = \mathbb{Q}[\sqrt{p_1}, \sqrt{p_2}, \ldots, \sqrt{p_n}]$.

- 1. Probar que $[E:\mathbb{Q}]=2^n$.
- 2. Sean $\lambda_1, \ldots, \lambda_n \in \mathbb{Q}$. Calcular el grado de $\lambda_1 \sqrt{p_1} + \lambda_2 \sqrt{p_2} + \cdots + \lambda_n \sqrt{p_n}$ sobre \mathbb{Q} .
- 3. Caracterizar las subextensiones de E/\mathbb{Q} .

Ejercicio 17. Sea K un cuerpo con $\operatorname{car}(K) \neq 2$. Sea E/K un extensión de grado 2. Probar que existe $a \in E$ tal que E = K[a] y $a^2 \in K$.

Ejercicio 18. Sean $K = \mathbb{C}((X))$ y $L = \mathbb{C}((X^{1/2}))$. Probar que:

- 1. Si $u \in \mathcal{U}(\mathbb{C}[[X]])$ entonces existe $v \in \mathcal{U}(\mathbb{C}[[X]])$ tal que $u = v^2$.
- 2. Si $f \in K[Y]$ es de grado 2, entonces f tiene sus raices en L.