ÁLGEBRA III

Práctica 6 – Primer Cuatrimestre de 2007

Localización, propiedades locales y extensiones de anillos¹

Ejercicio 1. Sea A un anillo y sea $x \in A$ un elemento nilpotente.

- i) Probar que $1 + x \in \mathcal{U}(A)$.
- ii) Deducir que si $u \in \mathcal{U}(A)$ y $x \in A$ es nilpotente, entonces $u + x \in \mathcal{U}(A)$.

Ejercicio 2. Sea A un anillo y sea $f = a_0 + a_1X + \cdots + a_nX^n \in A[X]$. Probar que:

- i) $f \in \mathcal{U}(A[X])$ si y sólo si $a_0 \in \mathcal{U}(A)$ y a_i es nilpotente $\forall 1 \leq i \leq n$.
- ii) f es nilpotente si y sólo si a_i es nilpotente $\forall 0 \le i \le n$.
- iii) f es divisor de cero en A[X] si y sólo si existe $a \in A \{0\}$ tal que $a \cdot f = 0$.

Ejercicio 3. Sea A un anillo. Probar que el radical de Jacobson del anillo A[X] es igual a su nilradical.

Ejercicio 4.

- i) Sea \mathcal{O} un anillo local, y sea $e \in \mathcal{O}$ tal que $e^2 = e$ (un elemento e que satisface esta igualdad se llama un *idempotente* del anillo). Probar que e = 0 o e = 1.
- ii) Dar un ejemplo de un anillo con exactamente 2 ideales maximales que posea idempotentes no triviales.

Ejercicio 5. Sea A un anillo y sea $S \subset A$ un conjunto multiplicativamente cerrado tal que $0 \notin S$. Sea $\Sigma = \{ \mathcal{I} \subset A / \mathcal{I} \text{ ideal}, \mathcal{I} \cap S = \emptyset \}.$

- i) Probar que Σ tiene elementos maximales con respecto a la inclusión.
- ii) Sea $\mathcal{I} \in \Sigma$ maximal con respecto a la inclusión. Probar que \mathcal{I} es un ideal primo de A.

Ejercicio 6. Sean M un A-módulo finitamente generado, N un submódulo de M e \mathcal{I} un ideal de A contenido en el radical de Jacobson de A. Probar que si $M = N + \mathcal{I} M$, entonces N = M.

Ejercicio 7. Sean A un anillo, M un A-módulo finitamente generado y $\Phi: M \to M$ un morfismo. Probar que si Φ es un epimorfismo, entonces Φ es un isomorfismo.

(Sugerencia: M tiene una estructura de A[X]-módulo definida por $X \cdot m = \Phi(m)$.)

¹ Nota: En esta práctica la palabra anillo significará anillo conmutativo con identidad $1 \neq 0$.

Ejercicio 8. Sea \mathcal{O} un anillo local con ideal maximal \mathfrak{M} , y sea M un \mathcal{O} -módulo finitamente generado.

- i) Sean $x_1, \ldots, x_n \in M$ tales que $\{\bar{x}_1, \ldots, \bar{x}_n\}$ es un sistema de generadores de $M/\mathfrak{M}M$ como \mathcal{O}/\mathfrak{M} -espacio vectorial. Probar que $\{x_1, \ldots, x_n\}$ es un sistema de generadores de M.
- ii) Deducir que dos sistemas de generadores minimales de M tienen la misma cantidad de elementos.

Ejercicio 9. Sea A un subanillo de un anillo B tal que B es entero sobre A, y sea $f: A \to \mathbb{K}$ un homomorfismo de A en un cuerpo algebraicamente cerrado \mathbb{K} . Probar que f se puede extender a un homomorfismo de B en \mathbb{K} .

Ejercicio 10. Sea $A \subseteq B$ una extensión entera de anillos. Sea \mathfrak{N} un ideal maximal de B y sea $\mathfrak{M} = \mathfrak{N} \cap A$ el ideal maximal correspondiente de A. ¿Es $B_{\mathfrak{N}}$ necesariamente entero sobre $A_{\mathfrak{M}}$?

Ejercicio 11. Sea $A \subseteq B$ una extensión entera de anillos. Probar que:

- i) Si $x \in A$ es una unidad en B, entonces es una unidad en A.
- ii) El radical de Jacobson de A es la contracción del radical de Jacobson de B.

Ejercicio 12. Sea A un subanillo de un anillo B, tal que B-A es cerrado por multiplicación. Probar que A es íntegramente cerrado en B.

Ejercicio 13. Probar que todo dominio de factorización única es íntegramente cerrado.

Ejercicio 14. Sea k un cuerpo y sean x, y indeterminadas sobre k.

- i) Probar que k[x,y]/(xy-1) es integramente cerrado.
- ii) Verificar que $k[x,y]/(x^2-y^3)$ no es íntegramente cerrado.

Ejercicio 15. Sea A un subanillo de un dominio íntegro B, y sea C la clausura entera de A en B. Sean $f, g \in B[X]$ polinomios mónicos tales que el producto $fg \in C[X]$. Probar que f y g están en C[X].

Ejercicio 16. Sea $A \subseteq B$ una extensión entera de anillos. Sean $\mathcal{P}_1 \subsetneq \mathcal{P}_2 \subsetneq \ldots \subsetneq \mathcal{P}_n$ una cadena de ideales primos de A, y $\mathcal{Q}_1 \subsetneq \mathcal{Q}_2 \subsetneq \ldots \subsetneq \mathcal{Q}_m$ (m < n) una cadena de ideales primos de B, tales que $\mathcal{Q}_i \cap A = \mathcal{P}_i \ \forall \ 1 \leq i \leq m$. Probar que existen ideales primos $\mathcal{Q}_{m+1}, \ldots, \mathcal{Q}_n \subseteq B$ tales que $\mathcal{Q}_m \subsetneq \mathcal{Q}_{m+1} \subsetneq \ldots \subsetneq \mathcal{Q}_n$ y $\mathcal{Q}_i \cap A = \mathcal{P}_i \ \forall \ m+1 \leq i \leq n$.