Práctica 2

Nota: $m(\alpha, K)$ denota el polinomio minimal de α sobre el cuerpo K y ξ_n denota una raíz n-ésima primitiva de la unidad.

- 1. Sean E/K una extensión y $\alpha \in E$ algebraico sobre K. Dada F/K una subextensión de E/K, probar que $m(\alpha, F) \mid m(\alpha, K)$. Dar ejemplos con $m(\alpha, F) = m(\alpha, K)$ y con $m(\alpha, F) \neq m(\alpha, K)$.
- 2. Calcular los siguientes polinomios minimales:
 - (a) $m(\sqrt[4]{2}, \mathbb{Q})$
- (b) $m(\sqrt[4]{2}, \mathbb{Q}(\sqrt{2}))$
- (c) $m(\omega, \mathbb{R})$ con $\omega \in \mathbb{C}$

- (d) $m(\sqrt[4]{-1}, \mathbb{Q})$
- (e) $m(\sqrt[4]{-1}, \mathbb{Q}(i))$ (f) $m(\sqrt{2} \sqrt{3}, \mathbb{Q})$
- 3. Calcular:
 - (a) $\left[\mathbb{Q}(\sqrt[4]{2}):\mathbb{Q}(\sqrt{2})\right]$
- (b) $[\mathbb{Q}(\sqrt{2},i):\mathbb{Q}]$
- (c) $[\mathbb{Q}(\sqrt[3]{3}, \sqrt[5]{7}) : \mathbb{Q}]$
- 4. (a) Calcular $[\mathbb{Q}(\sqrt{2},\sqrt{3}):\mathbb{Q}]$ y $[\mathbb{Q}(\sqrt{2}+\sqrt{3}):\mathbb{Q}]$. Deducir que $\mathbb{Q}(\sqrt{2},\sqrt{3})=\mathbb{Q}(\sqrt{2}+\sqrt{3})$.
 - (b) Hallar $\alpha \in \mathbb{C}$ tal que $\mathbb{Q}(\alpha) = \mathbb{Q}(\sqrt[3]{2}, \sqrt{3})$. Calcular $m(\alpha, \mathbb{Q})$.
- 5. Probar que $\mathbb{Q}\left(\sqrt{2-\sqrt{3}}\right) = \mathbb{Q}\left(\sqrt{2+\sqrt{3}}\right)$. Calcular $\left[\mathbb{Q}\left(\sqrt{2-\sqrt{3}}\right):\mathbb{Q}\right]$.
- 6. Sea K un cuerpo y sea E = K(a) una extensión finita de K. Para cada $\alpha \in E$ definimos $L_{\alpha}: E \to E$ como la K-transformación lineal dada por $L_{\alpha}(x) = \alpha x$.
 - (a) Probar que $m(a, K) = \chi_{L_a} = \det(XI L_a)$.
 - (b) ¿ Para cuáles $\alpha \in E$ vale que $m(\alpha, K) = \chi_{L_{\alpha}}$?
- 7. Sea E/K una extensión. Probar que E/K es algebraica si, y sólo si, todo anillo A tal que $K \subset A \subset E$, es un cuerpo.
- 8. Sean L/K y M/K dos subextensiones de grado finito de una extensión F/K.
 - (a) Si mcd([L:K], [M:K]) = 1, entonces $[L \cdot M:K] = [L:K] \cdot [M:K]$.
 - (b) Probar que si $[L \cdot M : K] = [L : K] \cdot [M : K]$ entonces $L \cap M = K$. ¿Vale la recíproca?
- 9. Mostrar que el polinomio $X^5 + 6X^3 + 15X^2 + 3$ es irreducible en $\mathbb{Q}(\sqrt{2}, \sqrt{3})[X]$.
- 10. (a) Sea F/K una extensión de grado impar. Probar que si F = K(u) entonces $F = K(u^2)$.
 - (b) Si [E:K] es primo, entonces E/K no tiene cuerpos intermedios.
 - (c) Sea $n \in \mathbb{N}$, (n,6) = 1. Sea F/\mathbb{Q} una subextensión de \mathbb{C}/\mathbb{Q} de grado n. Probar que $[F(\sqrt[3]{2}, i) : F] = 6$.

- 11. (a) Caracterizar las extensiones cuadráticas de un cuerpo K de característica $\neq 2$.
 - (b) Sea $f = X^2 + X + 1 \in \mathbb{F}_2[X]$ y sea a una raíz de f en una clausura algebraica de \mathbb{F}_2 . Probar que no existe b en $\mathbb{F}_2(a)$ tal que $m(b, \mathbb{F}_2) = X^2 + c$ para algún c en \mathbb{F}_2 . Caracterizar las extensiones cuadráticas de un cuerpo de característica 2.
- 12. Sea a_b una raíz del polinomio $X^2 + bX + b^2$ ($b \in \mathbb{Q}$). Describir las posibles extensiones $\mathbb{Q}(a_b)/\mathbb{Q}$ y determinar $[\mathbb{Q}(a_b):\mathbb{Q}]$.
- 13. Sea $a \in \mathbb{C}$ una raíz de $X^3 2X + 2$ y sea $b = a^2 a$. Probar que $\mathbb{Q}(a) = \mathbb{Q}(b)$ y calcular $m(b, \mathbb{Q})$.
- 14. (a) Sea p un primo positivo. Calcular $m(\xi_p, \mathbb{Q})$. Deducir $[\mathbb{Q}(\xi_p) : \mathbb{Q}]$.
 - (b) Calcular $m(\xi_6, \mathbb{Q})$
 - (c) Probar que $m(\xi_n, \mathbb{Q}) = 1 + X + X^2 + \ldots + X^{n-1}$ si y sólo si n es primo.
- 15. Probar que $m(\xi_5 + \xi_5^{-1}, \mathbb{Q}) = X^2 + X 1$. Deducir que $\mathbb{Q}(\xi_5)$ admite una subextensión cuadrática y caracterizarla.
- 16. Sea p un primo positivo y $a \notin \mathbb{Q}^p$.
 - (a) Probar que $m(\sqrt[p]{a}, \mathbb{Q}) = X^p a$.
 - (b) Sea $K \subseteq \mathbb{C}$ el mínimo cuerpo que contiene a todas las raíces de $m(\sqrt[p]{a}, \mathbb{Q})$. Caracterizar K y calcular $[K : \mathbb{Q}]$ y $[K : \mathbb{Q}(\sqrt[p]{a})]$.
- 17. Sea $\{p_i\}_{i\in\mathbb{N}}$ una numeración de los primos positivos.
 - (a) Calcular $[\mathbb{Q}(\sqrt{p_1}, \sqrt{p_2}, \dots, \sqrt{p_n}) : \mathbb{Q}]$. Calcular la cantidad de subextensiones de grado 2 que tiene esta extensión.
 - (b) Usar (a) para calcular $[\mathbb{Q}(\sqrt{p_i})_{i\in\mathbb{N}}:\mathbb{Q}]$.
 - (c) $\exists \alpha_1, \ldots, \alpha_n \in \mathbb{C}$ tal que $\mathbb{Q}(\sqrt{p_i})_{i \in \mathbb{N}} = \mathbb{Q}(\alpha_1, \ldots, \alpha_n)$?
 - (d) Sea K un cuerpo algebraicamente cerrado tal que $\mathbb{Q} \subseteq K \subseteq \mathbb{C}$ (¿Existe alguno $\neq \mathbb{C}$?). Calcular $[K:\mathbb{Q}]$.
- 18. Sea E/K una extensión algebraica de grado infinito. Probar que existen subextensiones de grado finito arbitrariamente grande.
- 19. Sea E/K una extensión algebraica tal que todo polinomio $f \in K[X]$ se factoriza linealmente en E[X]. Probar que E es algebraicamente cerrado.
- 20. (a) Probar que un cuerpo algebraicamente cerrado es infinito.
 - (b) Sea E/K una extensión algebraica. Calcular el cardinal de E en función del cardinal de K.
 - (c) Probar que hay no numerables elementos trascendentes en \mathbb{R}/\mathbb{Q} .
- 21. (a) Sea $d \in \mathbb{Z}$ libre de cuadrados. Probar que hay sólo dos morfismos de cuerpos $f : \mathbb{Q}(\sqrt{d}) \to \mathbb{C}$ y que en cada caso $f(\mathbb{Q}(\sqrt{d})) \subseteq \mathbb{Q}(\sqrt{d})$ (de hecho, vale la igualdad).
 - (b) Sea $d \in \mathbb{Z}$ libre de cubos.

- i. Probar que hay sólo tres morfismos de cuerpos $f: \mathbb{Q}(\sqrt[3]{d}) \to \mathbb{C}$ pero que, en general, $f(\mathbb{Q}(\sqrt[3]{d})) \not\subseteq \mathbb{Q}(\sqrt[3]{d})$.
- ii. Considerar $\mathbb{Q}(\xi_3, \sqrt[3]{d})$. ¿Qué pasa en este caso?
- 22. Sea K un cuerpo.
 - (a) Sea X una indeterminada. Para cada $n \in \mathbb{N}$, calcular $m(X, K(X^n))$. Deducir $[K(X): K(X^n)]$.
 - (b) Sea $\{X_1,X_2,...,X^n\}$ un conjunto de indeterminadas y sean $e_1,...,e_n\in\mathbb{N}$. Calcular $[K(X_1,...,X_n):K(X_1^{e_1},...,X_n^{e_n})]$.
- 23. Sea K un cuerpo y sea $f \in K[X]$ no constante. Probar que $[K(X):K(f)] = \operatorname{gr} f$.