Algebra Lineal

Repaso de sistemas de ecuaciones lineales y matrices

Sistemas de ecuaciones lineales

1. Resolver los siguientes sistemas de ecuaciones lineales en \mathbb{R}

i)
$$\begin{cases} x_1 + x_2 - 2x_3 + x_4 &= 0 \\ 3x_1 - 2x_2 + x_3 + 5x_4 &= 0 \\ x_1 - x_2 + x_3 + 2x_4 &= 0 \end{cases}$$
 ii)
$$\begin{cases} x_1 + x_2 + x_3 &= 0 \\ x_1 - 3x_2 + x_3 &= 0 \\ 3x_1 - 5x_2 + 3x_3 &= 0 \\ x_1 - x_2 + x_3 &= 0 \end{cases}$$

iii)
$$\begin{cases} x_1 + x_2 - 2x_3 + x_4 &= -2 \\ 3x_1 - 2x_2 + x_3 + 5x_4 &= 3 \\ x_1 - x_2 + x_3 + 2x_4 &= 2 \end{cases}$$
 iv)
$$\begin{cases} x_1 + x_2 + x_3 - 2x_4 + x_5 &= 1 \\ x_1 - 3x_2 + x_3 + x_4 + x_5 &= 0 \\ 3x_1 - 5x_2 + 3x_3 + 3x_5 &= 0 \end{cases}$$

¿Cambia algo si los sistemas se resuelven en $\mathbb Q$ o en $\mathbb C$?

2. Resuelva los siguientes sistemas y compare los conjuntos de soluciones:

i)
$$\{x+2y-3z=4$$
 ii) $\begin{cases} x+2y-3z=4\\ x+3y+z=11 \end{cases}$ iii) $\begin{cases} x+2y-3z=4\\ x+3y+z=11\\ 2x+5y-4z=13 \end{cases}$

- 3. Sea H un sistema lineal homogéneo de n ecuaciones con m incógnitas. Probar:
 - (i) Si n < m, entonces H tiene alguna solución no nula.
 - (ii) Si m < n, entonces existe un sistema lineal homogéneo H' de m ecuaciones con m incógnitas cuyo conjunto de soluciones coincide con el conjunto de soluciones de H.
- 4. Para cada uno de los siguientes sistemas lineales homogéneos, determinar todos los $k \in \mathbb{R}$ para los cuales el sistema tiene alguna solución no trivial:

$$\mathrm{i}) \left\{ \begin{array}{ll} x_1 + kx_2 + x_3 &= 0 \\ (k+1)x_2 + x_3 &= 0 \\ (k^2 - 4)x_3 &= 0 \end{array} \right. \\ \mathrm{ii}) \left\{ \begin{array}{ll} x_1 + kx_2 + x_3 &= 0 \\ 2x_1 + x_3 &= 0 \\ 2x_1 + kx_2 + kx_3 &= 0 \end{array} \right.$$

5. Resolver los siguientes sistemas no homogéneos y los sistemas homogéneos asociados a cada uno de ellos:

i)
$$\begin{cases} x_1 - x_2 + x_3 &= 2 \\ -x_1 + 2x_2 + x_3 &= -1 \\ -x_1 + 4x_2 + 5x_3 &= 1 \end{cases}$$
 ii)
$$\begin{cases} x_1 - x_2 + x_3 &= 1 \\ -x_1 + 2x_2 + x_3 &= 1 \\ -x_1 + 4x_2 + 5x_3 &= 4 \end{cases}$$

iii)
$$\begin{cases} x_1 - x_2 - x_3 &= 2 \\ 2x_1 + x_2 - 2x_3 &= 1 \\ x_1 + 4x_2 + x_3 &= 1 \end{cases}$$
 iv)
$$\begin{cases} x_1 - x_2 - x_3 &= \alpha \\ 2x_1 + x_2 - 2x_3 &= \beta \\ x_1 + 4x_2 + x_3 &= \gamma \end{cases}$$
 $\alpha, \beta, \gamma \in \mathbb{R}$

1

- 6. Sea H un sistema lineal no homogéneo y sea p una solución de H. Sea H_0 el sistema lineal homogéneo asociado a H. Probar que si S y S_0 son los conjuntos de soluciones de H y H_0 respectivamente, entonces $S = S_0 + p = \{s + p : s \in S_0\}$.
- 7. Dado el sistema

$$\begin{cases} 2x_1 - x_2 + x_3 &= \alpha_1 \\ 3x_1 + x_2 + 4x_3 &= \alpha_2 \\ -x_1 + 3x_2 + 2x_3 &= \alpha_3 \end{cases}$$

Determinar los valores de $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}$ para los cuales el sistema admite solución.

8. Determinar para qué valores de a y b en \mathbb{R} cada uno de los siguientes sistemas tiene solución única, no tiene solución o tiene infinitas soluciones:

i)
$$\begin{cases} ax_1 + x_2 + x_3 &= b \\ x_1 + ax_2 + x_3 &= 1 \\ x_1 + x_2 + ax_3 &= -1 \end{cases}$$
 ii)
$$\begin{cases} ax_1 + 2x_2 + ax_3 &= 1 \\ ax_1 + (a+4)x_2 + 3ax_3 &= -2 \\ -ax_1 - 2x_2 + x_3 &= 1 \\ (a+2)x_2 + (3a+1)x_3 &= b \end{cases}$$

9. Encuentre un sistema con coeficientes reales cuya solución general sea

$$\{(1,1,0) + \lambda(1,2,1) \text{ con } \lambda \in \mathbb{R}\}\$$

Matrices

- 10. Encuentre un contraejemplo para cada uno de las siguiente afirmaciones relativas al producto de matrices:
 - (i) AB = BA
 - (ii) $(A.B)^2 = A^2B^2$
 - (iii) $A.B = 0 \Rightarrow A = 0$ ó B = 0
 - (iv) A.B = A.C y $A \neq 0 \Rightarrow B = C$
 - (v) $A.B = 0 \Rightarrow B.A = 0$
 - (vi) $A^j = 0 \Rightarrow A = 0$
 - (vii) $A^2 = A \Rightarrow A = 0$ ó $A = I_n$
- 11. Probar que, $\forall n \in \mathbb{N}$, $n \geq 2$, el producto de matrices en $\mathbb{K}^{n \times n}$ no es conmutativo. (Sugerencia: probarlo para $\mathbb{K}^{2 \times 2}$ y usar multiplicación por bloques.)
- 12. Caracterizar el conjunto $\{A \in \mathbb{K}^{3\times3} / A.B = B.A \ \forall B \in \mathbb{K}^{3\times3} \}.$
- 13. Exhibir una matriz $A \in \mathbb{R}^{2 \times 2}$ tal que $A^2 = -I$

14. Dar condiciones necesarias y suficientes sobre A y $B \in \mathbb{K}^{n \times n}$ para que:

(i)
$$(A+B)^2 = A^2 + 2AB + B^2$$

(ii)
$$A^2 - B^2 = (A - B).(A + B)$$

- 15. Demostrar que si $A, B \in \mathbb{K}^{m \times n}$ y $A.x = B.x \ \forall x \in \mathbb{K}^n$, entonces A = B.
- 16. Decidir si las siguientes matrices son inversibles y, en caso afirmativo, exhibir sus inversas:

$$i) \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \quad ii) \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad iii) \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 \\ 2 & 1 & -2 & 3 \\ 3 & 1 & -1 & 3 \end{pmatrix}$$

iv)
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 v) $\begin{pmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & a_{nn} \end{pmatrix}$ vi) $\begin{pmatrix} 2 & 1 & 3 & 1 & 2 \\ 0 & 5 & -1 & 8 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 2 \end{pmatrix}$

- 17. Sea $A \in \mathbb{K}^{n \times n}$. Probar:
 - (i) Si A es inversible entonces $AB = 0 \Rightarrow B = 0$, $A.B = A.C \Rightarrow B = C$ y $A.B = 0 \Rightarrow B = 0$
 - (ii) Si A no es inversible, existe $B \neq 0, B \in \mathbb{K}^{n \times n}$ tal que AB = 0.
 - (iii) $A, B \text{ inversibles} \Rightarrow (AB)^{-1} = B^{-1}A^{-1}$.
- 18. Decidir si cada una de las siguientes afirmaciones es verdadera o falsa. Justificar:
 - (i) $A, B \in \mathbb{K}^{n \times n}$ inversibles $\Rightarrow A + B$ es inversible
 - (ii) A inversible $\iff A^t$ inversible.
 - (iii) A nilpotente (es decir, $\exists j \in \mathbb{N} / A^j = 0$) $\Rightarrow A$ no es inversible.

Nota: Dada $A \in \mathbb{K}^{n \times n}$, se llama **matriz transpuesta de** A a la matriz $A^t \in \mathbb{K}^{n \times n}$ definida por $(A^t)_{ij} := (A)_{ji}, \forall 1 \leq i, j \leq n$.

19. Sea $A \in \mathbb{K}^{n \times n}$ y sea $b \in \mathbb{K}^n$. Probar que el sistema A.x = b tiene solución única $\iff A$ inversible.

3