ALGEBRA LINEAL - Práctica N°3 - Primer cuatrimestre de 2004

Transformaciones lineales

Ejercicio 1. Determinar cuáles de las siguientes aplicaciones son lineales.

i)
$$f: \mathbb{R}^3 \to \mathbb{R}^2$$
, $f(x_1, x_2, x_3) = (x_2 - 3.x_1 + \sqrt{2}.x_3, x_1 - \frac{1}{2}.x_2)$

ii)
$$f: \mathbb{R}^2 \to \mathbb{R}^3$$
, $f(x_1, x_2) = (x_1 - x_2, 2.x_2, 1 + x_1)$

iii)
$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
, $f(x_1, x_2, x_3) = (2.x_1 - 7.x_3, 0, 3.x_2 + 2.x_3)$

iv)
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
, $f(x_1, x_2) = (x_1 + x_2, |x_1|)$

- v) $f:\mathbb{C}\to\mathbb{C}$, f(z)=i.z (considerando a \mathbb{C} como \mathbb{R} -espacio vectorial) vectorial)
- vi) $f: \mathbb{C} \to \mathbb{C}$, f(z) = i.Im(z) (considerando a \mathbb{C} como \mathbb{R} -espacio vectorial y como \mathbb{C} -espacio vectorial)
- vii) $f: \mathbb{C} \to \mathbb{C}$, $f(z) = \overline{z}$ (considerando a \mathbb{C} como \mathbb{R} -espacio vectorial y como \mathbb{C} -espacio vectorial)

viii)
$$f: \mathbb{R}^{2\times 2} \to \mathbb{R}$$
, $f\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = a_{11}.a_{22} - a_{12}.a_{21}$

ix)
$$f: \mathbb{R}^{2\times 3} \to \mathbb{R}^3$$
, $f\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} = (3.a_{13} - a_{23}, a_{11} + 2.a_{22} - a_{23}, a_{22} - a_{12})$

x)
$$f: \mathbb{R}^{2\times 2} \to \mathbb{R}^{2\times 3}$$
, $f\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \begin{pmatrix} a_{22} & 0 & a_{12} + a_{21} \\ 0 & a_{11} & a_{22} - a_{11} \end{pmatrix}$

xi)
$$f: \mathbb{C}^{2\times 2} \to \mathbb{C}^{2\times 2}$$
, $f\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \begin{pmatrix} a_{11} & \overline{a_{12}} \\ \overline{a_{21}} & a_{22} \end{pmatrix}$ (considerando a $\mathbb{C}^{2\times 2}$ como \mathbb{R} -espacio vectorial)

Ejercicio 2. Interpretar geométricamente las siguientes aplicaciones lineales $f: \mathbb{R}^2 \to \mathbb{R}^2$.

i)
$$f(x,y) = (x,0)$$

ii)
$$f(x,y) = (0,y)$$

iii)
$$f(x,y) = (x, -y)$$

iv)
$$f(x,y) = (\frac{1}{2}.(x+y), \frac{1}{2}.(x+y))$$

v)
$$f(x,y) = (x.\cos t - y.\sin t, x.\sin t + y.\cos t)$$

Ejercicio 3.

i) Encontrar una función $f: V \to V$ (para un K-espacio vectorial V conveniente) que cumpla f(v+w) = f(v) + f(w) para cualquier par de vectores $v, w \in V$ pero que no sea una transformación lineal.

ii) Encontrar una función $f:V\to V$ (para un K-espacio vectorial V conveniente) que cumpla f(k.v)=k.f(v) para cualquier escalar $k\in K$ y cualquier vector $v\in V$ pero que no sea una transformación lineal.

Ejercicio 4. Probar la linealidad de las siguientes aplicaciones:

- i) $tr: K^{n \times n} \to K$
- ii) $t: K^{n \times m} \to K^{m \times n}, \ t(A) = A^t$
- iii) $f: K^{n \times m} \to K^{r \times m}, \ f(A) = B.A$ donde $B \in K^{r \times n}$
- iv) $\delta: C^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R}), \ \delta(f) = f'$
- v) $\epsilon_{\alpha}: K[X] \to K$, $\epsilon_{\alpha}(f) = f(\alpha)$ donde $\alpha \in K$
- vi) $s: K^{\mathbb{N}} \to K^{\mathbb{N}}, \ s(\{a_i\}_{i \in \mathbb{N}}) = (0, a_1, a_2, \dots, a_n, \dots)$

Ejercicio 5.

- i) Probar que existe una única transformación lineal $f: \mathbb{R}^2 \to \mathbb{R}^2$ tal que f(1,1) = (-5,3) y f(-1,1) = (5,2). Para dicha f, determinar f(5,3) y f(-1,2).
- ii) ¿Existirá una transformación lineal $f: \mathbb{R}^2 \to \mathbb{R}^2$ tal que f(1,1) = (2,6); f(-1,1) = (2,1) y f(2,7) = (5,3)?
- iii) Sean $f, g: \mathbb{R}^3 \to \mathbb{R}^3$ transformaciones lineales tales que

$$f(1,0,1) = (1,2,1), \quad f(2,1,0) = (2,1,0), \quad f(-1,0,0) = (1,2,1),$$

 $g(1,1,1) = (1,1,0), \quad g(3,2,1) = (0,0,1), \quad g(2,2,-1) = (3,-1,2).$

Determinar si f = q.

- iv) Hallar todos los $a \in \mathbb{R}$ para los cuales exista una transformación lineal $f : \mathbb{R}^3 \to \mathbb{R}^3$ que satisfaga que f(1, -1, 1) = (2, a, -1), $f(1, -1, 2) = (a^2, -1, 1)$ y f(1, -1, -2) = (5, -1, -7).
- v) Hallar una fórmula para todas las tranformaciones lineales $f: \mathbb{R}_3[X] \to \mathbb{R}^3$ que satisfacen $f(X^3+2X^2-X+4)=(6,5,3), \ f(3X^2+2X-5)=(0,0,-3), \ f(X^3-2X^2+3X-2)=(0,-1,1)$ y $f(2X^3-3X^2+7)=(6,4,7).$

Ejercicio 6.

- i) Calcular bases del núcleo y de la imagen para cada tranformación lineal del ejercicio 1. Decidir, en cada caso, si f es epimorfismo, monomorfismo o isomorfismo. En el caso que sea isomorfismo, calcular f^{-1} .
- ii) Clasificar las transformaciones lineales tr, t, δ , ϵ_{α} y s del ejercicio 4 en epimorfismos, monomorfismos e isomorfismos.

Ejercicio 7. Sean $f: \mathbb{R}^3 \to \mathbb{R}^4$, $f(x_1, x_2, x_3) = (x_1 + x_2, x_1 + x_3, 0, 0)$ y $g: \mathbb{R}^4 \to \mathbb{R}^2$, $g(x_1, x_2, x_3, x_4) = (x_1 - x_2, 2x_1 - x_2)$. Calcular el núcleo y la imagen de f, de g y de $g \circ f$. Decidir si son monomorfismos, epimorfismos o isomorfismos.

Ejercicio 8. Sean $g: V \to V'$ y $f: V' \to V''$ transformaciones lineales. Probar:

- i) $Nu(g) \subseteq Nu(f \circ g)$.
- ii) Si $Nu(f) \cap Im(g) = \{0\}$, entonces $Nu(g) = Nu(f \circ g)$.
- iii) $\operatorname{Im}(f \circ g) \subseteq \operatorname{Im}(f)$.
- iv) Si Im(g) = V', entonces $\text{Im}(f \circ g) = \text{Im}(f)$.

Ejercicio 9.

- i) Sean $S, T \subset \mathbb{R}^4$ definidos por $S = \{(x_1, x_2, x_3, x_4) / x_1 + x_2 + x_3 = 0\} \text{ y } T = \{(x_1, x_2, x_3, x_4) / 2.x_1 + x_4 = 0, x_2 x_3 = 0\}.$ ¿Existirá algún isomorfismo $f : \mathbb{R}^4 \to \mathbb{R}^4$ tal que f(S) = T?
- ii) ¿Existirá algún monomorfismo $f: \mathbb{R}^3 \to \mathbb{R}^2$?
- iii) ¿Existirá algún epimorfismo $f: \mathbb{R}^2 \to \mathbb{R}^3$?
- iv) Sean $v_1 = (1, 0, 1, 0), v_2 = (1, 1, 1, 0)$ y $v_3 = (1, 1, 1, 1)$. ¿Existirá alguna transformación lineal $f : \mathbb{R}^2 \to \mathbb{R}^4$ tal que $\{v_1, v_2, v_3\} \subset \text{Im}(f)$?

Ejercicio 10. Determinar si existe (y en caso afirmativo hallar) una transformación lineal $f: \mathbb{R}^3 \to \mathbb{R}^4$ que verifique $\operatorname{Im}(f) = S$ y $\operatorname{Nu}(f) = T$ en los siguientes casos:

i)
$$S = \{(x_1, x_2, x_3, x_4)/x_1 + x_2 - x_3 + 2.x_4 = 0\}, T = \langle (1, 2, 1) \rangle$$

ii)
$$S = \{(x_1, x_2, x_3, x_4)/x_1 + x_2 = 0, x_3 + x_4 = 0\}, T = <(1, -2, 1) >$$

Ejercicio 11. En cada uno de los siguientes casos encontrar una transformación lineal $f: \mathbb{R}^3 \to \mathbb{R}^3$ que verifique lo pedido:

- i) $(1,1,0) \in \text{Nu}(f) \text{ y dim}(\text{Im}(f)) = 1$
- ii) $Nu(f) \cap Im(f) = \langle (1, 1, 2) \rangle$
- iii) $f \neq 0$ y $Nu(f) \subseteq Im(f)$
- iv) $f \neq 0$ y $f \circ f = 0$
- v) $f \neq Id$ y $f \circ f = Id$
- vi) $Nu(f) \neq \{0\}, Im(f) \neq \{0\} y Nu(f) \cap Im(f) = \{0\}$

Ejercicio 12. Sea V un K-espacio vectorial de dimensión n y sea $B = \{v_1, \ldots, v_n\}$ una base de V. Se define la aplicación $\alpha_B : V \to K^n$ de la siguiente manera:

Si
$$v = \sum_{i=1}^{n} x_i v_i$$
, $\alpha_B(v) = (x_1, \dots, x_n)$.

Probar que α_B es un isomorfismo.

Observar que, teniendo en cuenta que la aplicación α_B es tomar coordenadas en la base B, esto nos permite trabajar con coordenadas en una base en el siguiente sentido:

- i) $\{w_1, \ldots, w_s\}$ es linealmente independiente en $V \iff \{\alpha_B(w_1), \ldots, \alpha_B(w_s)\}$ es linealmente independiente en K^n .
- ii) $\{w_1, \ldots, w_r\}$ es un sistema de generadores de $V \iff \{\alpha_B(w_1), \ldots, \alpha_B(w_r)\}$ es un sistema de generadores de K^n .
- iii) $\{w_1,\ldots,w_n\}$ es una base de $V\iff \{\alpha_B(w_1),\ldots,\alpha_B(w_n)\}$ es una base de K^n .

Por ejemplo, para decidir si $\{X^2 - X + 1, X^2 - 3.X + 5, 2.X^2 + 2.X - 3\}$ es una base de $\mathbb{R}_2[X]$, bastará ver si $\{(1, -1, 1), (1, -3, 5), (2, 2, -3)\}$ es una base de \mathbb{R}^3 para lo que se puede usar el método de triangulación.

Rehacer los items ii) y iii) de los ejercicios 34 y 35 de la práctica N°1 utilizando coordenadas.

Ejercicio 13. Sea V un K-espacio vectorial y sea $f:V\to V$ una transformación lineal. Probar que $f\circ f=f\iff f(v)=v \ \forall \,v\in \mathrm{Im}(f).$

Una transformación lineal que cumple esto se llama proyector.

Ejercicio 14. En cada uno de los siguientes casos construir un proyector $f: \mathbb{R}^3 \to \mathbb{R}^3$ que cumpla:

- i) $\operatorname{Im}(f) = \{(x_1, x_2, x_3)/x_1 + x_2 + x_3 = 0\}$
- ii) Nu(f) = { $(x_1, x_2, x_3)/x_1 + x_2 + x_3 = 0$ }
- iii) $Nu(f) = \{(x_1, x_2, x_3)/3.x_1 x_3 = 0\}$ e $Im(f) = \langle (1, 1, 1) \rangle$

Ejercicio 15. Sea V un K-espacio vectorial y sea $f: V \to V$ un proyector. Probar:

- i) $V = \text{Nu}(f) \oplus \text{Im}(f)$
- ii) $g = id_V f$ es un proyector con Im(g) = Nu(f) y Nu(g) = Im(f)

Ejercicio 16. Sea V un K-espacio vectorial de dimensión n y sean S y T subespacios de V tales que $V = S \oplus T$. Probar que existe un único proyector $f: V \to V$ tal que Nu(f) = S e Im(f) = T.

Ejercicio 17. Sea V un K-espacio vectorial y sea $f:V\to V$ una transformación lineal. Se dice que f es nilpotente si $\exists s\in\mathbb{N}\ /\ f^s=0$.

i) Probar que si f es nilpotente, entonces f no es ni monomorfismo ni epimorfismo.

- ii) Si V es de dimensión n probar que f es nilpotente $\iff f^n = 0$. (Sugerencia: considerar si las inclusiones $\operatorname{Nu}(f^i) \subseteq \operatorname{Nu}(f^{i+1})$ son estrictas o no).
- iii) Sea $B = \{v_1, \dots, v_n\}$ una base de V. Se define la transformación lineal $f: V \to V$ de la siguiente forma:

$$f(v_i) = \begin{cases} v_{i+1} & \text{si } 1 \le i \le n-1 \\ 0 & \text{si } i = n \end{cases}$$

Probar que $f^n = 0$ y $f^{n-1} \neq 0$.

iv) Si $V = \mathbb{R}^n$, para cada i, $2 \le i \le n$ construir una transformación lineal nilpotente $f : \mathbb{R}^n \to \mathbb{R}^n$ tal que $f^i = 0$ y $f^{i-1} \ne 0$.

Ejercicio 18. Sea $S = \langle (1, 1, 0, 1), (2, 1, 0, 1) \rangle \subseteq \mathbb{R}^4$.

- i) Hallar una transformación lineal $f: \mathbb{R}^4 \to \mathbb{R}^2$ tal que Nu(f) = S.
- ii) Hallar ecuaciones para S (usar i)).
- iii) Hallar un sistema de ecuaciones lineales cuyo conjunto de soluciones sea <(1,1,0,1),(2,1,0,1)>+(0,1,1,2).

Ejercicio 19.

- i) Sea $S \subseteq K^n$ el conjunto de soluciones de un sistema lineal homogéneo. Encontrar una transformación lineal $f: K^n \to K^n$ tal que Nu(f) = S.
- ii) Sea $T \subseteq K^n$ el conjunto de soluciones de un sistema lineal no homogéneo. Encontrar una transformación lineal $f: K^n \to K^n$ y $x \in K^n$ tales que $T = f^{-1}(x)$.

Ejercicio 20. Sea $f: V \to V$ una tranformación lineal y sean B, B' bases de V. Calcular $|f|_{BB'}$ en cada uno de los siguientes casos:

i)
$$V = \mathbb{R}^3$$
, $f(x_1, x_2, x_3) = (3.x_1 - 2.x_2 + x_3, 5.x_1 + x_2 - x_3, x_1 + 3.x_2 + 4.x_3)$, $B = B'$ la base canónica de \mathbb{R}^3

ii)
$$V = \mathbb{R}^3$$
, $f(x_1, x_2, x_3) = (3.x_1 - 2.x_2 + x_3, 5.x_1 + x_2 - x_3, x_1 + 3.x_2 + 4.x_3)$,
 $B = \{(1, 2, 1), (-1, 1, 3), (2, 1, 1)\}$ y $B' = \{(1, 1, 0), (1, 2, 3), (-1, 3, 1)\}$

- iii) $V = \mathbb{C}^2$, $f(x_1, x_2) = (2.x_1 i.x_2, x_1 + x_2)$, B = B' es la base canónica de \mathbb{C}^2 como \mathbb{C} -espacio vectorial.
- iv) $V = \mathbb{C}^2$, $f(x_1, x_2) = (2.x_1 i.x_2, x_1 + x_2)$, $B = B' = \{(1, 0), (0, 1), (i, 0), (0, i)\}$ considerando a \mathbb{C}^2 como \mathbb{R} -espacio vectorial.

v)
$$V = \mathbb{R}_4[X], \ f(P) = P', \ B = B' = \{1, X, X^2, X^3, X^4\}$$

vi)
$$V = \mathbb{R}_4[X], \ f(P) = P', \ B = B' = \{X^4, X^3, X^2, X, 1\}$$

vii)
$$V = \mathbb{R}_4[X], \ f(P) = P', \ B = \{1, X, X^2, X^3, X^4\}$$
 y $B' = \{X^4, X^3, X^2, X, 1\}$

- viii) $V = \mathbb{R}^{2 \times 2}$, $f(A) = A^t$, B = B' la base canónica de $\mathbb{R}^{2 \times 2}$.
- ix) V, f y B = B' como en el ejercicio 17, iii)

Ejercicio 21. Sean $B = \{v_1, v_2, v_3\}$ una base de \mathbb{R}^3 y $B' = \{w_1, w_2, w_3, w_4\}$ una base de \mathbb{R}^4 . Sea $f : \mathbb{R}^3 \to \mathbb{R}^4$ la transformación lineal tal que

$$|f|_{BB'} = \begin{pmatrix} 1 & -2 & 1\\ -1 & 1 & -1\\ 2 & 1 & 4\\ 3 & -2 & 5 \end{pmatrix}$$

- i) Hallar $f(3.v_1 + 2.v_2 v_3)$ ¿Cuáles son sus coordenadas en la base B'?
- ii) Hallar una base de Nu(f) y una base de Im(f).
- iii) Describir el conjunto $f^{-1}(w_1 3.w_3 w_4)$.

Ejercicio 22. Sea $A \in K^{m \times n}$ y $\theta_A : K^n \to K^m$ la transformación lineal definida por $\theta_A(x) = A.x$. Si $E \ y \ E'$ son las bases canónicas de K^n y de K^m respectivamente, probar que $|\theta_A|_{EE'} = A$.

Ejercicio 23. Sean V y W K-espacios vectoriales y sea

$$\operatorname{Hom}(V, W) = \{ f : V \to W / f \text{ es lineal} \}.$$

- i) Probar que Hom(V, W) es un K-espacio vectorial con las operaciones naturales.
- ii) Si dim V = n y dim W = m, sean B y B' bases de V y de W respectivamente. Sea T: Hom $(V, W) \to K^{m \times n}$ la aplicación definida por $T(f) = |f|_{BB'}$. Probar que T es lineal y que es un isomorfismo. Calcular dim(Hom(V, W)).

Ejercicio 24. Sean V, W y U K-espacios vectoriales de dimensión finita y sean B, B' y B'' bases de V, W y U respectivamente. Se consideran las transformaciones lineales $f: V \to W$ y $g: W \to U$. Probar que $|g \circ f|_{BB''} = |g|_{B'B''}.|f|_{BB'}$.

Ejercicio 25. Sean V y W K-espacios vectoriales de dimensión finita y sea $f:V\to W$ lineal. Si B y B' son bases de V, y U y U' son bases de W, deducir del ejercicio anterior que $|f|_{B'U'}=C(U,U').|f|_{BU}.C(B',B)$.

Ejercicio 26. Sea V un K-espacio vectorial y $B = \{v_1, v_2, v_3, v_4\}$ una base de V. Sea $f: V \to V$ la transformación lineal tal que

$$|f|_B = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

6

- i) Calcular $|f^{-1}|_B$
- ii) Calcular $f^{-1}(v_1 2.v_2 + v_4)$

Ejercicio 27. En cada uno de los siguientes casos, hallar una matriz $A \in \mathbb{R}^{n \times n}$ para un n adecuado que verifique:

- i) $A \neq I_n \text{ y } A^3 = I_n$
- ii) $A \neq 0$; $A \neq I_n$ y $A^2 = A$

Ejercicio 28. Sea V un K-espacio vectorial de dimensión finita y sea B una base de V.

- i) Sea $tr: \text{Hom}(V,V) \to K$ la aplicación definida por $tr(f) = tr(|f|_B)$. Probar que tr(f) no depende de la base B elegida.
 - tr(f) se llama la traza del endomorfismo f.
- ii) Probar que $tr: \operatorname{Hom}(V,V) \to K$ es una transformación lineal.

Ejercicio 29. Sean $B = \{v_1, v_2, v_3\}$, $U = \{v_1 + v_3, v_1 + 2.v_2 + v_3, v_2 + v_3\}$ y $U' = \{w_1, w_2, w_3\}$ bases de \mathbb{R}^3 , y sea E la base canónica de \mathbb{R}^3 . Sea $f : \mathbb{R}^3 \to \mathbb{R}^3$ la transformación lineal tal que

$$|f|_{BE} = \begin{pmatrix} 1 & -1 & 3 \\ 2 & 1 & 1 \\ 3 & 2 & 1 \end{pmatrix}$$
 y $|f|_{UU'} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$

Determinar U'.

Ejercicio 30.

i) Sea $f: \mathbb{R}^4 \to \mathbb{R}^4$ la trasformación lineal definida por

$$f(x_1, x_2, x_3, x_4) = (0, x_1, x_1 + x_2, x_1 + x_2 + x_3)$$

y sea v=(1,0,0,0). Probar que $B=\{v,f(v),f^2(v),f^3(v)\}$ es una base de \mathbb{R}^4 . Calcular $|f|_B$.

ii) Sea V un K-espacio vectorial de dimensión n y sea $f:V\to V$ una tranformación lineal tal que $f^n=0$ y $f^{n-1}\neq 0$. Probar que existe una base B de V tal que

$$(|f|_B)_{ij} = \begin{cases} 1 & \text{si } i = j+1 \\ 0 & \text{si no} \end{cases}$$

(Sugerencia: elegir $v_1 \notin \text{Nu}(f^{n-1})$).

Ejercicio 31. Sea V un K-espacio vectorial de dimensión n y sea $f:V\to V$ un proyector. Probar que existe una base B de V tal que

$$(|f|_B)_{ij} = \begin{cases} 1 & \text{si } i = j \text{ ; } i \leq \dim(\operatorname{Im}(f)) \\ 0 & \text{si no} \end{cases}$$

(Sugerencia: ver Ejercicio 15.)

Ejercicio 32. Sea $f: \mathbb{R}^5 \to \mathbb{R}^4$ definida por

$$f(x_1, x_2, x_3, x_4, x_5) = (2.x_1 - x_5, x_2 + 2.x_3, x_1 + x_4 + x_5, -x_1 + x_4 + x_5).$$

Encontrar bases B y B' de $\mathbb{R}^5 y \mathbb{R}^4$ respectivamente tales que $|f|_{BB'}$ sea una matriz diagonal.

Ejercicio 33. Sean V y W K-espacios vectoriales, dim V = n y dim W = m, y $f: V \to W$ una transformación lineal tal que dim(Im(f)) = s. Probar que existen una base B de V y una base B' de W tal que

$$(|f|_{BB'})_{ij} = \begin{cases} 1 & \text{si } i = j \ ; \ i \le s \\ 0 & \text{si no} \end{cases}$$

Ejercicio 34. Sea $f: \mathbb{R}^3 \to \mathbb{R}^3$ definida por

$$f(x_1, x_2, x_3) = (x_1 + x_2 - x_3, 2.x_1 - 3.x_2 + 2.x_3, 3.x_1 - 2.x_2 + x_3).$$

i) Determinar bases B y B' de \mathbb{R}^3 tales que

$$|f|_{BB'} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

ii) Si A es la matriz de f en la base canónica, encontrar matrices $C, D \in GL(3,\mathbb{R})$ tales que

$$C.A.D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Ejercicio 35. Calcular el rango de las siguientes matrices:

i)
$$A = \begin{pmatrix} 2 & 0 & 3 & -1 \\ 1 & -2 & 1 & 0 \\ -1 & 1 & 0 & 1 \end{pmatrix}$$
 ii) $A = \begin{pmatrix} 0 & 5 & 3 \\ 1 & -1 & 2 \\ 2 & 3 & 1 \end{pmatrix}$

iii)
$$A = \begin{pmatrix} 3 & -1 & 0 & 1 & 2 \\ -1 & 0 & 4 & -1 & 0 \\ 3 & 1 & 1 & 0 & 1 \\ 2 & 0 & 0 & 3 & 1 \end{pmatrix}$$
 iv) $A = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix}$

Ejercicio 36. Calcular el rango de $A \in \mathbb{R}^{3\times 3}$ para cada $k \in \mathbb{R}$ siendo

$$A = \begin{pmatrix} 1 & -k & -1 \\ -1 & 1 & k^2 \\ 1 & k & k-2 \end{pmatrix}.$$

8

Ejercicio 37.

- i) Sea $A \in K^{m \times n}$ y sea $S = \{x \in K^n \mid A.x = 0\}$. Probar que $\operatorname{rg}(A) + \dim(S) = n$. (Esto significa que la dimensión del espacio de soluciones es igual a la cantidad de incógnitas menos la cantidad de ecuaciones independientes).
- ii) Sean $A \in K^{m \times n}$, $b \in K^m$. Se considera el sistema A.x = b y sea $(A \mid b)$ su matriz ampliada. Probar que A.x = b tiene solución \iff $\operatorname{rg}(A) = \operatorname{rg}(A \mid b)$.

Ejercicio 38. Sea $A \in K^{m \times n}$, rg(A) = s y sea $T = \{x \in K^{n \times r} / A \cdot x = 0\}$. Calcular la dimensión de T.

Ejercicio 39. Sean $A \in K^{m \times n}$ y $B \in K^{n \times r}$. Probar que $\operatorname{rg}(A.B) \leq \operatorname{rg}(A)$ y $\operatorname{rg}(A.B) \leq \operatorname{rg}(B)$.

Ejercicio 40. Sean $A \in K^{m \times n}$, $C \in GL(m, K)$ y $D \in GL(n, K)$.

- i) Probar que rg(C.A) = rg(A) = rg(A.D).
- ii) Deducir que rg(C.A.D) = rg(A).

Ejercicio 41. Sean $A, B \in K^{m \times n}$. Se dice que A es equivalente a B (y se nota $A \equiv B$) si existen $C \in GL(m,K)$ y $D \in GL(n,K)$ tales que A = C.B.D. Probar que E es una relación de equivalencia en E

Ejercicio 42. Sean $A, D \in \mathbb{R}^{3\times 3}$,

$$A = \begin{pmatrix} 1 & 1 & -1 \\ 2 & -3 & 2 \\ 3 & -2 & 1 \end{pmatrix} \qquad y \qquad D = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ -1 & 0 & 1 \end{pmatrix}.$$

i) Determinar C_1 , C_2 , C_3 y $C_4 \in GL(3,\mathbb{R})$ tales que

$$C_1.A.C_2 = C_3.D.C_4 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

(Sugerencia: ver Ejercicio 34.)

ii) Determinar $f \in \text{Hom}(\mathbb{R}^3, \mathbb{R}^3)$ y bases B, B', B_1 y B_1' de \mathbb{R}^3 tales que

$$|f|_{BB'} = A$$
 y $|f|_{B_1B'_1} = D$

Ejercicio 43. Sean A, $C \in K^{m \times n}$. Probar que las siguientes afirmaciones son equivalentes:

- i) $A \equiv C$.
- ii) $\exists f: K^n \to K^m$ tranformación lineal, bases B y B_1 de K^n y bases B' y B'_1 de K^m tales que $|f|_{BB'} = A$ y $|f|_{B_1B'_1} = C$.
- iii) rg(A) = rg(C).

Ejercicio 44. Dadas A, $B \in \mathbb{R}^{n \times n}$, decidir si existen matrices P, $Q \in GL(n, \mathbb{R})$ tales que A = P.B.Q.

i)
$$n = 2$$
; $A = \begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix}$; $B = \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix}$

ii)
$$n = 2$$
; $A = \begin{pmatrix} 2 & 3 \\ 4 & 6 \end{pmatrix}$; $B = \begin{pmatrix} 5 & 8 \\ 1 & 2 \end{pmatrix}$

iii)
$$n = 3$$
; $A = \begin{pmatrix} 1 & 0 & 5 \\ 2 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$; $B = \begin{pmatrix} 3 & 8 & 5 \\ 2 & 2 & 0 \\ 0 & 7 & 0 \end{pmatrix}$

iv)
$$n = 3$$
; $A = \begin{pmatrix} 1 & 1 & 0 \\ 2 & 1 & 0 \\ 3 & 0 & 1 \end{pmatrix}$; $B = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 0 & 1 \\ 1 & 1 & 3 \end{pmatrix}$

Ejercicio 45. Sean $A, B \in K^{n \times n}$. Se dice que A es *semejante* a B (y se nota $A \sim B$) si existe $C \in GL(n,K)$ tal que $A = C.B.C^{-1}$.

- i) Demostrar que \sim es una relación de equivalencia en $K^{n\times n}$.
- ii) Probar que dos matrices semejantes son equivalentes. ¿Vale la recíproca?

Ejercicio 46. Sean $A, C \in K^{n \times n}$. Probar que las siguientes afirmaciones son equivalentes:

- i) $A \sim C$.
- ii) $\exists f: K^n \to K^n$ tranformación lineal y bases B y B' de K^n tales que $|f|_B = A$ y $|f|_{B'} = C$

Ejercicio 47.

- i) Sean $A, C \in K^{n \times n}$ tales que $A \sim C$. Probar que tr(A) = tr(C).
- ii) Sean $A, C \in \mathbb{R}^{3\times 3}$

$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 3 & -5 \\ 4 & 1 & 3 \end{pmatrix} \qquad \text{y} \qquad C = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}.$$

¿Existen $f \in \text{Hom}(\mathbb{R}^3, \mathbb{R}^3)$ y bases B y B' de \mathbb{R}^3 tales que $|f|_B = A$ y $|f|_{B'} = C$?

Ejercicios de parciales

Ejercicio 1. Sea $f: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$ la transformación lineal definida por $f(A) = 4.A - 2 \operatorname{tr}(A).I_n$.

- i) Si n=2, probar que $Nu(f) \oplus Im(f) = \mathbb{R}^{2\times 2}$.
- ii) Si $n \geq 3$, probar que f es un isomorfismo.

Ejercicio 2. Se consideran los siguientes subespacios de $\mathbb{R}^{2\times 2}$:

$$S = \{ A \in \mathbb{R}^{2 \times 2} / tr(A) = 0 \}$$
 y $T = \{ B \in \mathbb{R}^{2 \times 2} / B = B^t \}$

Hallar una transformación lineal $f: \mathbb{R}^{2\times 2} \to \mathbb{R}^{2\times 2}$ que satisfaga **simultáneamente** f(S) = T, f(T) = S y $f(v) \neq v$, $\forall v \in T - \{0\}$. (Justificar que la f hallada cumple todo lo pedido).

Ejercicio 3. Dadas $B = \{X^2 + X, X, X^2 + X + 1\}$ y $B' = \{X^2, 1, X\}$ bases de $\mathbb{R}_2[X]$, se considera la transformación lineal $f : \mathbb{R}_2[X] \to \mathbb{R}_2[X]$ tal que

$$|f|_{B,B'} = \begin{pmatrix} 1 & 1 & 0 \\ 2 & a & 1 \\ a & 1 & 2a - 2 \end{pmatrix}$$

Encontrar todos los $a, b \in \mathbb{R}$ para los que f cumple simultáneamente

$$\dim(\mathrm{Nu}(f))=1 \quad \text{ y } \quad (b+1).X+b \in \mathrm{Im}(f).$$

Ejercicio 4. Sea $A \in \mathbb{R}^{4 \times 2}$ y sea $B \in \mathbb{R}^{2 \times 4}$ tales que $\operatorname{rg}(A) = \operatorname{rg}(B) = 2$. Probar que $\operatorname{rg}(A.B) = 2$.

Ejercicio 5. Se consideran los siguientes subespacios de $\mathbb{R}_3[X]$:

$$S = \{ P \in \mathbb{R}_3[X]/P(1) = 0 \land P'(2) = 0 \}$$

$$T = \langle X^3 - 2X^2 + 2X - 2, 6X^2 - 12X + 4, 2X^3 + 2X^2 - 8X \rangle$$

i) Hallar una transformación lineal $f: \mathbb{R}_3[X] \to \mathbb{R}_3[X]$ que satisfaga **simultáneamente**

$$f(S+T) = S \cap T$$
, $\operatorname{Im}(f) = T$ y $f^2 = 0$.

ii) Sea H un subespacio de dimensión 3 de $\mathbb{R}_3[X]$ tal que dim $(H \cap T) = 1$. Para **cualquier** transformación lineal f que cumpla las condiciones del ítem i) calcular f(H).