Álgebra Lineal

SEGUNDO CUATRIMESTRE 2004

Práctica 6

AUTOVALORES Y AUTOVECTORES. DIAGONALIZACION (PRIMERA PARTE).

(1) Calcular el polinomio característico, los autovalores y los autovectores de la matriz A en cada uno de los siguientes casos. Analizar por separado los casos $\mathbb{K} = \mathbb{R}$ y $\mathbb{K} = \mathbb{C}$.

$$\begin{aligned} & \text{(i)}\,A = \begin{pmatrix} 1 & 3 \\ -3 & -1 \end{pmatrix} \quad \text{(ii)}\,A = \begin{pmatrix} 1 & 3 \\ 3 & -1 \end{pmatrix} \quad \text{(iii)}A = \begin{pmatrix} 0 & a \\ -a & 0 \end{pmatrix} \ (a \in \mathbb{R}) \\ & \text{(iv)}A = \begin{pmatrix} 0 & 2 & 1 \\ -2 & 0 & 3 \\ -1 & -3 & 0 \end{pmatrix} \quad \text{(v)}\,A = \begin{pmatrix} 3 & 1 & 0 \\ -4 & -1 & 0 \\ 4 & -8 & -2 \end{pmatrix} \quad \text{(vi)}\,A = \begin{pmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{pmatrix} \ (a \in \mathbb{R}) \\ & \text{(vii)}A = \begin{pmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ 0 & a & 1 \end{pmatrix} \ (a \in \mathbb{R}) \quad \text{(viii)}\,A = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad \text{(ix)}\,A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$

- (2) Para cada una de las matrices A del ejercicio anterior, sea U una base de \mathbb{K}^n y sea $f: \mathbb{K}^n \to \mathbb{K}^n$ la tranformación lineal tal que $||f||_U = A$. Decidir si es posible encontrar una base B de \mathbb{K}^n tal que $||f||_B$ sea diagonal. En caso afirmativo, calcular C(U, B).
- (3) Sea $f: \mathbb{R}^3 \to \mathbb{R}^3$ la transformación lineal definida por

$$f(x, y, z) = (-x - 2.y + 2.z, y, -x - 3.y - 4.z)$$

Encontrar una base B de \mathbb{R}^3 tal que $||f||_B$ sea diagonal.

- (4) (a) Sean $A, C y D \in \mathbb{K}^{n \times n}$ tales que $A = DCD^{-1}$. Probar que, para todo $n \in \mathbb{N}$, $A^n = DC^nD^{-1}$.
 - (b) Calcular

$$\begin{pmatrix} -1 & -2 & 2 \\ 0 & 1 & 0 \\ -1 & -3 & -4 \end{pmatrix}^n \quad (\forall \, n \in \mathbb{N})$$

- (c) ¿ Existe una matriz $P \in \mathbb{R}^{3\times 3}$ tal que $P^2 = \begin{pmatrix} -1 & -2 & 2 \\ 0 & 1 & 0 \\ -1 & -3 & -4 \end{pmatrix}$?
- (5) (a) Sea $A = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \in \mathbb{K}^{2\times 2}$. Determinar todos los a, b y $c \in \mathbb{K}$ para los que A es diagonalizable.
 - (b) Probar que toda matriz $A \in \mathbb{C}^{2 \times 2}$ es diagonalizable o bien es semejante a una matriz del tipo $\begin{pmatrix} \alpha & 0 \\ 1 & \alpha \end{pmatrix}$.
- (6) Diagonalizar las matrices $A \in \mathbb{R}^{n \times n}$ y $B \in \mathbb{R}^{6 \times 6}$ encontrando sus autovectores.

$$A = \begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & 1 & 1 & \dots & 1 \\ 1 & 1 & 1 & \dots & 1 \\ \dots & \dots & \dots & \dots & \dots \\ 1 & 1 & 1 & \dots & 1 \end{pmatrix} \qquad y \qquad B = \begin{pmatrix} 2 & 1 & 2 & 1 & 2 & 1 \\ 1 & 2 & 1 & 2 & 1 & 2 \\ 2 & 1 & 2 & 1 & 2 & 1 \\ 1 & 2 & 1 & 2 & 1 & 2 \\ 2 & 1 & 2 & 1 & 2 & 1 \\ 1 & 2 & 1 & 2 & 1 & 2 \end{pmatrix}$$

Sugerencia: no intentar calcular el polinomio característico.

- (7) Se sabe que la matriz $A \in \mathbb{R}^{2\times 2}$ tiene a (1, -1) como autovector de autovalor $\sqrt{2}$ y, además, $\mathcal{X}_A \in \mathbb{Q}[X]$. Decidir si A es diagonalizable en $\mathbb{R}^{2\times 2}$. ¿Es A única?
- (8) (a) Sea $A \in \mathbb{R}^{3\times 3}$ diagonalizable con tr(A) = -4. Calcular los autovalores de A, sabiendo que los autovalores de $A^2 + 2.A$ son -1, 3 y 8.
 - (b) Sea $A \in \mathbb{R}^{4 \times 4}$ tal que $\det(A) = 6$; 1 y -2 son autovalores de A y -4 es autovalor de la matriz $A 3.I_4$. Hallar los restantes autovalores de A.
- (9) Sea $A \in \mathbb{K}^{n \times n}$. Probar que A y A^t tienen los mismos autovalores. Dar un ejemplo en el que los autovectores sean distintos.
- (10) Sea $\delta: C^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R})$ la transformación lineal derivación. Mostrar que todo número real es un autovalor de δ y exhibir un autovector correspondiente.
- (11) Sea $f: \mathbb{K}^n \to \mathbb{K}^n$ un proyector con dim $(\operatorname{Im}(f))=s$. Calcular \mathcal{X}_f . ¿Es f diagonalizable?
- (12) Sea \mathbb{K} un cuerpo incluido en \mathbb{C} y sea $f: \mathbb{K}^n \to \mathbb{K}^n$ un morfismo nilpotente. Calcular \mathcal{X}_f . ¿Es f diagonalizable?

- (13) Sea $A \in \mathbb{R}^{n \times n}$ que verifica $A^2 + I_n = 0$. Probar que A es inversible, que no tiene autovalores reales y que n debe ser par.
- (14) Sea V un \mathbb{K} -espacio vectorial de dimensión finita y sea $f:V\to V$ una transformación lineal tal que $\dim(\operatorname{Im}(f)) = 1$. Probar que f es diagonalizable si y sólo si $\operatorname{Nu}(f) \cap \operatorname{Im}(f) = \{0\}$.
- (15) Sea $D \in \mathbb{K}^{n \times n}$ una matriz inversible y diagonal. Sea $f : \mathbb{K}^{n \times n} \to \mathbb{K}^{n \times n}$ la transformación lineal definida por $f(A) = D^{-1}AD$. Hallar los autovalores y los autovectores de f y probar que es diagonalizable.
- (16) Sea $f:\mathbb{C}^n\to\mathbb{C}^n$ una transformación lineal. Probar que existe una base B de \mathbb{C}^n tal que $||f||_B$ es triangular superior.
- (17) Sea $A \in \mathbb{C}^{n \times n}$ y sean $\lambda_1, ..., \lambda_n$ las raíces de \mathcal{X}_A contadas con multiplicidad. Probar que $\det(A) = \prod_{i=1}^n \lambda_i$ y
- que $\operatorname{tr}(A) = \sum_{i=1}^{n} \lambda_{i}$.

 (18) Sean $A \in \mathbb{K}^{m \times n}$ y $B \in \mathbb{K}^{n \times m}$.

 (a) Probar que las matrices $\begin{pmatrix} A.B & 0 \\ B & 0 \end{pmatrix}$ y $\begin{pmatrix} 0 & 0 \\ B & B.A \end{pmatrix}$ de $\mathbb{K}^{(m+n) \times (m+n)}$ son semejantes.

 (b) Deducir que, si n = m, $\mathcal{X}_{A.B} = \mathcal{X}_{B.A}$