Algebra Lineal

Primer Cuatrimestre 2005 Práctica 5 Determinantes

(1) Calcular el determinante de las siguientes matrices:

(a)
$$\begin{pmatrix} -3 & 2 \\ 4 & 5 \end{pmatrix}$$
 (d) $\begin{pmatrix} 2 & -1 & 3 \\ -1 & 1 & -2 \\ 4 & -1 & 5 \end{pmatrix}$ (f) $\begin{pmatrix} 5 & 4 & -2 & 5 \\ 2 & -3 & 0 & 6 \\ 0 & 0 & 2 & 0 \\ -4 & 3 & 3 & 8 \end{pmatrix}$ (c) $\begin{pmatrix} 1 & 2 & 5 \\ -3 & 0 & -1 \\ 1 & -4 & -2 \end{pmatrix}$ (e) $\begin{pmatrix} 2 & 3 & -2 & 5 \\ 4 & -5 & 0 & 6 \\ 2 & 0 & -1 & 7 \\ 6 & 3 & -4 & 8 \end{pmatrix}$

- (2) (a) Sea $A \in \mathbb{K}^{n \times n}$ una matriz triangular. Probar que $\det(A) = \prod_{i=1}^{n} A_{ii}$.
 - (b) Calcular el determinante de $A \in \mathbb{K}^{n \times n}$ siendo

$$A = \begin{pmatrix} 0 & 0 & \cdots & 0 & a_1 \\ 0 & 0 & \cdots & a_2 & 0 \\ \vdots & \cdots & \cdots & \vdots \\ 0 & a_{n-1} & \cdots & 0 & 0 \\ a_n & 0 & \cdots & 0 & 0 \end{pmatrix}$$

- (3) (a) Si $A \in \mathbb{K}^{n \times n}$, $B \in \mathbb{K}^{m \times m}$ y $C \in \mathbb{K}^{n \times m}$, sea $M \in \mathbb{K}^{(n+m) \times (n+m)}$ la matriz de bloques definida por $M = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$. Probar que $\det(M) = \det(A) \cdot \det(B)$.
 - (b) Sean $r_1, r_2, \cdots, r_n \in \mathbb{N}$ y para cada $i, 1 \leq i \leq n$ sea $A_i \in \mathbb{K}^{r_i \times r_i}$. Se considera la matriz de bloques

$$M = \begin{pmatrix} A_1 & 0 & 0 & \dots & 0 \\ 0 & A_2 & 0 & \dots & 0 \\ 0 & 0 & A_3 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & A_n \end{pmatrix}$$

Calcular $\det(M)$.

(4) Calcular los determinantes de las siguientes matrices:

(a)
$$\begin{pmatrix} 1 & 2 & 3 & \dots & n \\ -1 & 0 & 3 & \dots & n \\ -1 & -2 & 0 & \dots & n \\ \dots & \dots & \dots & \dots & \dots \\ -1 & -2 & -3 & \dots & 0 \end{pmatrix}$$
 (c)
$$\begin{pmatrix} 0 & 1 & 1 & \dots & 1 & 1 \\ 1 & 0 & x & \dots & x & x \\ 1 & x & 0 & \dots & x & x \\ \dots & \dots & \dots & \dots & \dots \\ 1 & x & x & \dots & \dots & \dots \\ 1 & x & x & \dots & x & 0 \end{pmatrix}$$
 (b)
$$\begin{pmatrix} x & a & a & \dots & a \\ a & x & a & \dots & a \\ a & a & x & \dots & x \\ \dots & \dots & \dots & \dots & \dots \\ a & a & a & \dots & x \end{pmatrix}$$

(5) (a) Calcular inductivamente el determinante de $A \in \mathbb{R}^{n \times n}$:

(b) Calcular inductivamente el determinante de la matriz **compañera** $A \in \mathbb{K}^{n \times n}$:

$$A = \begin{pmatrix} t & 0 & 0 & \dots & 0 & 0 & a_0 \\ -1 & t & 0 & \dots & 0 & 0 & a_1 \\ 0 & -1 & t & \dots & 0 & 0 & a_2 \\ 0 & 0 & -1 & \dots & 0 & 0 & a_3 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & -1 & t & a_{n-2} \\ 0 & 0 & 0 & \dots & 0 & -1 & t + a_{n-1} \end{pmatrix}$$

- (6) Sea $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ tal que: (i) $a_{ij} \leq 0$ si $i \neq j$, y (ii) $\sum_{i=1}^{n} a_{ij} > 0$. Probar que det A > 0.
- (7) (a) Sean $k_1, k_2, \ldots, k_n \in \mathbb{K}$. Denotamos con $V(k_1, k_2, \ldots, k_n)$ a la matriz de Vandermonde

$$V(k_1, k_2, \dots, k_n) = \begin{pmatrix} 1 & 1 & \dots & \dots & 1 \\ k_1 & k_2 & \dots & \dots & k_n \\ k_1^2 & k_2^2 & \dots & \dots & k_n^2 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ k_1^{n-1} & k_2^{n-1} & \dots & \dots & k_n^{n-1} \end{pmatrix}$$

Probar que det $V(k_1, k_2, \dots, k_n) = \prod_{1 \leq i \leq n} (k_j - k_i)$

Por lo tanto, si $\alpha_0, \alpha_1, \ldots, \alpha_n \in \mathbb{K}$ son escalares distintos, $V(\alpha_0, \alpha_1, \ldots, \alpha_n)$ resulta inversible. Sea $A = (V(\alpha_0, \alpha_1, \ldots, \alpha_n))^t \in \mathbb{K}^{(n+1)\times(n+1)}$ y sean $\beta_0, \beta_1, \ldots, \beta_n \in \mathbb{K}$. Probar entonces que el sistema $A \cdot x = (\beta_0, \beta_1, \ldots, \beta_n)^t$ tiene solución única $x = (x_0, x_1, \ldots, x_n)^t \in \mathbb{K}^{(n+1)\times 1}$ y $P = \sum_{i=0}^n x_i X^i$ es el polinomio interpolador de Lagrange tal que $P(\alpha_i) = \beta_i$ $(0 \le i \le n)$.

- (b) Probar que el conjunto de funciones reales $\{e^{\alpha_1 x}, e^{\alpha_2 x}, \dots, e^{\alpha_n x}\}$ es linealmente independiente si y sólo si $\alpha_i \neq \alpha_j \ \forall i \neq j$. (Sugerencia: evaluar una combinación lineal en los puntos $0, 1, \dots, n-1$). Deducir que el espacio vectorial $\mathcal{C}^{\infty}(\mathbb{R})$ tiene dimensión infinita.
- (8) Calcular los determinantes de las siguientes matrices:

(a)
$$\begin{pmatrix} 1+a & 1+b & 1+c & 1+d \\ 1+a^2 & 1+b^2 & 1+c^2 & 1+d^2 \\ 1+a^3 & 1+b^3 & 1+c^3 & 1+d^3 \\ 1+a^4 & 1+b^3 & 1+c^4 & 1+d^4 \end{pmatrix}$$
 (b)
$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ a^2 & b^2 & c^2 & d^2 \\ a^3 & b^3 & c^3 & d^3 \\ a^4 & b^4 & c^4 & d^4 \end{pmatrix}$$

(9) Sea
$$A = (a_{ij}) \in \mathbb{R}^{3 \times 3}$$
 tal que $A \cdot \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 7 \end{pmatrix}$. Si $\det(A) = 3$, calcular el determinante de la matriz
$$\begin{pmatrix} a_{12} & a_{22} & a_{32} \\ 1 & 2 & 7 \\ a_{11} + 2a_{13} & a_{21} + 2a_{23} & a_{31} + 2a_{33} \end{pmatrix}.$$

- (10) Sea $A = \begin{pmatrix} 0 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 2 & 3 \end{pmatrix}$ y sea $B \in \mathbb{R}^{3\times 3}$, $B = (b_{ij})$ una matriz tal que $\det(A + B) = \det(A B)$. Probar que B es inversible si y sólo si $b_{11} \neq b_{21}$.
- (11) (a) Sea $A \in \mathbb{R}^{4 \times 4}$ la matriz $A = \begin{pmatrix} a & b & c & d \\ b & -a & d & -c \\ c & -d & -a & b \\ d & c & -b & -a \end{pmatrix}$. Probar que el sistema $A \cdot x = 0$ tiene solución

única si y sólo si a, b, c y d no son todos iguales a cero.

- (b) Analizar la validez de la afirmación anterior si $A \in \mathbb{C}^{4\times 4}$.
- (12) Sea $A \in \mathbb{K}^{n \times n}$ y sea $r \in \mathbb{K}$. Probar que existe $x \neq 0$ en $\mathbb{K}^{n \times 1}$ tal que $A \cdot x = r \cdot x$ si y sólo si $\det(A r \cdot I_n) = 0$.
- (13) Calcular el determinante, la adjunta y la inversa de cada una de las siguientes matrices:

(a)
$$\begin{pmatrix} 2 & 3 \\ 5 & 1 \end{pmatrix}$$
 (c) $\begin{pmatrix} 2 & -3 & 3 \\ -5 & 4 & 0 \\ 0 & -2 & 2 \end{pmatrix}$ (b) $\begin{pmatrix} 1 & 1 & 2 & 3 \\ -1 & 2 & 5 & 4 \\ 2 & 1 & 0 & 1 \end{pmatrix}$ (d) $\begin{pmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{pmatrix}$

- (14) Sea A una matriz inversible. Calcular $\det(\operatorname{adj} A)$. ¿Qué pasa si A no es inversible?
- (15) (a) Resolver los siguientes sistemas lineales sobre Q empleando la regla de Cramer:

(i)
$$\begin{cases} 3x_1 - x_2 &= -3 \\ x_1 + 7x_2 &= 4 \end{cases}$$
 (iii)
$$\begin{cases} 3x_1 - 2x_2 + x_3 &= 0 \\ -x_1 + x_2 + 2x_3 &= 1 \\ 2x_1 + x_2 + 4x_3 &= 2 \end{cases}$$
 (iii)
$$\begin{cases} x_1 + x_2 + x_3 + x_4 &= 0 \\ -x_1 + 2x_2 - 4x_3 + x_4 &= 1 \\ x_1 - x_2 - x_3 - x_4 &= 4 \\ 5x_1 + x_2 - 3x_3 + 2x_4 &= 0 \end{cases}$$

(b) Resolver el siguiente sistema lineal sobre \mathbb{Z}_7 empleando la regla de Cramer:

$$\begin{cases} 3x + y + 2z = 1\\ x + z = 6\\ 2x + 2y + z = 3 \end{cases}$$

- (16) Sea $A \in \mathbb{Z}^{n \times n}$ tal que $\det(A) = 1$ ó $\det(A) = -1$. Probar que para todo $b = (b_1, \dots, b_n) \in \mathbb{Z}^n$, existe un único $x = (x_1, \dots, x_n) \in \mathbb{Z}^n$ tal que $A \cdot x = b$.
- (17) Sea $A \in \mathbb{R}^{3 \times 3}$ la matriz $A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$. Se sabe que $\det \begin{pmatrix} 1 & b & c \\ 2 & e & f \\ 5 & h & i \end{pmatrix} = 0, \qquad \det \begin{pmatrix} a & 2 & c \\ d & 4 & f \\ g & 10 & i \end{pmatrix} = 0, \qquad \det \begin{pmatrix} a & b & -1 \\ d & e & -2 \\ g & h & -5 \end{pmatrix} = 0.$

Calcular $\det A$

- (18) Sea $A \in \mathbb{K}^{m \times n}$
 - (a) Probar que son equivalentes:
 - (i) $rg(A) \ge s$;
 - (ii) A admite una submatriz de $s \times s$ con determinante no nulo.
 - (b) Deducir que

 $\operatorname{rg}(A) = \max\{s \in \mathbb{N}_0 \mid A \text{ admite una submatriz de } s \times s \text{ con determinante no nulo}\}.$

- (19) (a) Sea $A \in \mathbb{K}^{3\times 3}$ no inversible tal que $a_{11}a_{33} \neq a_{13}a_{31}$. Calcular la dimensión de $S = \{x \in \mathbb{K}^3 \mid A \cdot x = 0\}$.
 - (b) Sea $A \in \mathbb{K}^{n \times n}$ no inversible tal que $\operatorname{adj}(A) \neq 0$. Calcular $\operatorname{rg}(A)$ y $\operatorname{rg}(\operatorname{adj} A)$.
- (20) Sea $f: V \to V$ una transformación lineal. Si $\mathcal{B} \subset V$ es una base, se considera $\det(||f||_{\mathcal{B}})$. Probar que no depende de la base, y por lo tanto tiene sentido hablar del determinante de f.
- (21) (a) Calcular el área del paralelogramo generado por los vectores (2,1) y (-4,5)
 - (b) Mismo problema para (3,4) y (-2,-3)
 - (c) Calcular el área de un paralelogramo tal que 3 de sus vértices están dados por los puntos (1,1), (2,-1) v (4,6)
 - (d) Calcular el volumen del paralelepípedo generado por (1,1,3), (1,2,-1) y (1,4,1)
 - (e) Mismo problema para (-2, 2, 1), (0, 1, 0) y (-4, 3, 2).
- (22) Se tiene: una transformación lineal $f: \mathbb{R}^2 \to \mathbb{R}^2$; un subconjunto acotado $X \subset \mathbb{R}^2$ dibujado; el dibujo de f(X); un programa de computadora que dada una base $\{v_1, v_2\}$ de \mathbb{R}^2 y dados $f(v_1), f(v_2)$, calcula la matriz de f en la base canónica. El programa tiene el defecto de que trabaja con aproximaciones de los

números, y para calcular un cociente $\frac{a}{b}$ comete un error más grosero cuanto menor es |b|. ¿Cómo conviene elegir los puntos v_1 y v_2 del dibujo X para que el cálculo de la matriz de f sea lo más acertado posible?

- (23) (a) Sea $A = (a_{ij}) \in \mathbb{K}^{6 \times 6}$. ¿Con qué signos aparecen los siguientes productos en $\det(A)$?:
 - (i) $a_{23} \cdot a_{31} \cdot a_{42} \cdot a_{56} \cdot a_{14} \cdot a_{65}$
 - (ii) $a_{32} \cdot a_{43} \cdot a_{14} \cdot a_{51} \cdot a_{66} \cdot a_{25}$
 - (b) Sea $A = (a_{ij}) \in \mathbb{K}^{5 \times 5}$. Elegir todos los posibles valores de j y de k tales que el producto $a_{1j} \cdot a_{32} \cdot a_{4k} \cdot a_{25} \cdot a_{53}$ aparezca en $\det(A)$ con signo +
 - (c) Sea $A = (a_{ij}) \in \mathbb{K}^{4\times 4}$. Escribir todos los términos de det(A) que tengan al factor a_{23} y signo +
 - (d) Sin calcular el determinante, calcular los coeficientes de X^4 y de X^3 en

$$\det \left(\begin{array}{cccc} 2X & X & 1 & 2 \\ 1 & X & 1 & -1 \\ 3 & 2 & X & 1 \\ 1 & 1 & 1 & X \end{array} \right)$$

(e) Sin calcular el determinante, calcular el coeficiente de a^6 y el de b^6 en

$$\det \left(\begin{array}{cccccccc} 1 & b & a & 1 & 1 & a \\ 1 & 1 & b & 1 & a & 1 \\ 1 & 1 & 1 & a & b & 1 \\ a & 1 & 1 & 1 & 1 & b \\ 1 & 1 & a & b & 1 & a \\ b & a & 1 & 1 & 1 & 1 \end{array} \right)$$

- (24) Sean $A, B, C, D \in \mathbb{K}^{n \times n}$. Sea $M \in \mathbb{K}^{2n \times 2n}$ la matriz de bloques $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$. Probar que si $A \in GL(n, \mathbb{K}), \det(M) = \det(AD ACA^{-1}B)$. Si además AC = CA entonces $\det(M) = \det(AD BC)$.
- (25) Recordar la Resultante entre dos polinomios: un determinante que dice si los polinomios tienen un factor en común o no. Encontrar, dado un polinomio, una forma de saber si tiene raíces dobles o no. Encontrar una expresión explícita, en función de los coeficientes, para el caso de un polinomio de grado 2 y de grado 3.