Algebra Lineal

Primer Cuatrimestre 2005 Práctica 8 FORMA DE JORDAN

(1) Dadas las matrices $A \vee A'$ en $\mathbb{K}^{n \times n}$

$$A = \begin{pmatrix} 0 & 0 & \dots & 0 & 0 \\ 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & 0 & \dots & 1 & 0 \end{pmatrix} \qquad y \qquad A' = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & & & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & \dots & 0 \end{pmatrix}$$

- (a) Probar que ambas son nilpotentes y que A es semejante a A'.
- (b) Dar bases B y B' de $\mathbb{R}_{< n-1}[X]$ tal que la matriz de la derivación en la base B sea A y en la base B'
- (2) ¿Cuántas clases de semejanza hay de matrices en $\mathbb{C}^{8\times8}$ cuyo minimal es x^3 ? ¿Y en $\mathbb{R}^{8\times8}$?
- (3) Probar que dos matrices en $\mathbb{C}^{6\times 6}$ nilpotentes con igual polinomio minimal e igual rango son semejantes. ¿Es cierto en $\mathbb{C}^{7\times7}$?
- (4) Hallar la forma y una base de Jordan de la matriz $A \in \mathbb{C}^{9 \times 9}$:

(5) Hallar la forma y una base de Jordan de la matriz $A = (a_{ij}) \in \mathbb{C}^{n \times n}$, con

$$a_{ij} = \begin{cases} 0 & \text{si } i \le j \\ 1 & \text{si } i > j \end{cases}$$

- (6) Decidir si existen y en caso afirmativo exhibir matrices A tales que

 - (a) $A \in \mathbb{C}^{8 \times 8}$, nilpotente y $(\operatorname{rg}(A), \operatorname{rg}(A^2), \operatorname{rg}(A^3), \operatorname{rg}(A^4), \operatorname{rg}(A^5)) = (6, 4, 3, 1, 0).$ (b) $A \in \mathbb{R}^{16 \times 16}$, $m_A(X) = X^5$, $(\operatorname{rg}(A), \operatorname{rg}(A^2), \operatorname{rg}(A^3), \operatorname{rg}(A^4), \operatorname{rg}(A^5)) = (9, 5, 3, 1, 0)$. ¿Cuántas clases de semejanza de matrices hay que verifiquen esto?
- (7) Sea $f \in \text{End}(V)$ y $\mathcal{X}_f = \prod_{i=1}^t p_i^{m_i}$ la descomposición de su característico en factores primos. Sea $\widetilde{p}_i =$ $\mathcal{X}_f/p_i^{m_i}$, y considérense polinomios q_i tales que $1=\sum_{i=1}^t \widetilde{p}_i q_i$. Probar que para cada $i, \ \widetilde{p}_i(f)q_i(f)$ es un proyector.
- (8) Sea $f \in \text{End}(\mathbb{R}^3)$ el endomorfismo cuya matriz en la base canónica es $\begin{pmatrix} 3 & 3 & -2 \\ 1 & 3 & -1 \\ 2 & 4 & -1 \end{pmatrix}$. Factorizar su polinomio característico y escribir el 1 como combinación polinomial de los factores. Encontrar proyectores sobre los espacios $V^p := \{v \in V \mid \exists m : p^m(v) = 0\}.$
- (9) Sea V un \mathbb{C} -espacio vectorial, $f \in \text{End}(V)$, λ un autovalor de f y $V^{\lambda} = V^{(x-\lambda)}$ definido como en el ejercicio ?? y $V_n^{\lambda} = \ker((f - \lambda)^n)$. Sea $h \in \mathbb{C}[x]$ un polinomio cualquiera. Probar que
 - (a) $\ker(h(f))$ e $\operatorname{Im}(h(f))$ son subespacios f-invariantes.
 - (b) Si λ es raíz de h entonces $V_1^{\lambda} \subseteq \ker(h(f))$.
 - (c) Si λ es raíz de multiplicidad n de h entonces $V_n^{\lambda} \subseteq \ker(h(f))$.
 - (d) Si λ no es raíz de h entonces $V_1^{\lambda} \subseteq \text{Im}(h(f))$.
 - (e) Probar que, en este caso, $V^{\lambda} \subseteq \text{Im}(h(f))$.
- (10) Probar que dos matrices en $\mathbb{C}^{2\times 2}$ son semejantes si y solo si tienen igual característico e igual minimal. ¿Vale esto en $\mathbb{C}^{3\times3}$? ¿Y en $\mathbb{C}^{4\times4}$?

1

(11) Encontrar la forma y una base de Jordan para las siguientes matrices:

- (12) Sea $V \subset \mathcal{C}^{\infty}(\mathbb{R})$ el subespacio generado por e^x , xe^x , x^2e^x y e^{2x} . Hallar la forma y una base de Jordan para el endomorfismo t(f) = f'.
- (13) Encontrar todas las formas de Jordan posibles para una matriz A tal que
 - (a) $\mathcal{X}_A(X) = (X-2)^4(X-3)^2$, $m_A(X) = (X-2)^2(X-3)^2$.

 - (b) $\mathcal{X}_A(X) = (X-7)^5$, $m_A(X) = (X-7)^2$. (c) $\mathcal{X}_A(X) = (X-2)^7$, $m_A(X) = (X-2)^3$.
 - (d) $\mathcal{X}_A(X) = (X-3)^4(X-5)^4$, $m_A(X) = (X-3)^2(X-5)^2$.
- (14) Encontrar la forma de Jordan de una matriz $A \in \mathbb{C}^{15 \times 15}$ con tres autovalores λ_1 , λ_2 y λ_3 , que verifica $\operatorname{rg}(A - \lambda_1 Id) = 13$, $\operatorname{rg}(A - \lambda_1 Id)^2 = 11$, $\operatorname{rg}(A - \lambda_1 Id)^3 = 10$, $\operatorname{rg}(A - \lambda_1 Id)^4 = 10$, $\operatorname{rg}(A - \lambda_2 Id) = 13$, $\operatorname{rg}(A - \lambda_2 Id)^2 = 11$, $\operatorname{rg}(A - \lambda_2 Id)^3 = 10$, $\operatorname{rg}(A - \lambda_2 Id)^4 = 9$, $\operatorname{rg}(A - \lambda_3 Id) = 13$, $\operatorname{rg}(A - \lambda_3 Id)^2 = 12$, $rg(A - \lambda_3 Id)^3 = 11.$
- (15) Hallar la forma de Jordan de la matriz

$$\begin{pmatrix}
2 & 3 & 4 & 5 & \dots & n+1 \\
0 & 2 & 3 & 4 & \dots & n \\
0 & 0 & 2 & 3 & \dots & n-1 \\
0 & 0 & 0 & 2 & \dots & n-2 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \dots & 2
\end{pmatrix}$$

- (16) Sea $J = J_{\lambda,n} = \begin{pmatrix} \lambda & 0 & \cdots & 0 \\ 1 & \lambda & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 1 & \lambda \end{pmatrix} \in \mathbb{R}^{n \times n}$ la matriz-bloque de Jordan de $n \times n$.
 - (a) Calcular J^m . (Sugerencia: descomponer J=D+N, donde D es escalar y N es nilpotente; notar que conmutan y aplicar el binomio de Newton).
 - (b) Encontrar una relación entre J^m y las (n-1) primeras derivadas de la función x^m .
 - (c) Calcular f(J), donde $f(x) = \sum_{i=0}^{m} a_i x^i$ es un polinomio.
 - (d) Sea f = ∑_{i=0}[∞] a_ixⁱ una serie de potencias cuyo radio de convergencia es > |λ|. Probar que la serie f(J) = ∑_{i=0}[∞] a_iJⁱ converge y encontrar la expresión de f(J) en términos de las derivadas de f.
 (e) Calcular e^J, sen(J), cos(J).

 - (f) Calcular e^A , sen(A) y cos(A) para A alguna de las matrices del ejercicio ??.
- (17) Hacer lo mismo que en el ejercicio anterior pero para tJ, donde $t \in \mathbb{R}$ es tal que el radio de convergencia de f es $> |t\lambda|$.
- (18) Probar que si A y B conmutan entonces $e^{A+B}=e^Ae^B$.
- (19) Sea $A \in \mathbb{C}^{6 \times 6}$ con polinomio minimal $m_A = x^6$. Si $\{v_1, \dots, v_6\}$ es una base de Jordan para A, encontar la forma y una base de Jordan para A^2 , A^3 , A^4 y A^5 .
- (20) Probar que en $\mathbb{C}^{n\times n}$ toda matriz es semejante a su transpuesta.
- (21) Sea $A = (a_{ij}) \in \mathbb{K}^{n \times n}$ una matriz tal que $a_{ij} = x_i y_j$ para vectores $x, y \in \mathbb{K}^n$. Calcular el rango de A y sus autovalores. Probar que es diagonalizable.
- (22) Sea (a_n) una sucesión definida por $a_0 = \alpha$, $a_1 = \beta$ y $a_{n+2} = \lambda a_{n+1} + \mu a_n$ si $n \ge 0$. Escribir el vector $(a_{n+2},a_{n+1})^t$ como $A \cdot (a_{n+1},a_n)^t$ para cierta matriz A. Encontrar (a_{n+2},a_{n+1}) en términos de α y β para $\lambda = \mu = 1$ (sucesión de Fibonacci). Hacer lo propio con $\lambda = 4$, $\mu = -4$.