Algebra Lineal

Primer Cuatrimestre 2005

Práctica 9

Variedades Lineales

(1) Sean en \mathbb{R}^3 los puntos $A = (1, -1, 0), B = (2, 1, -1), x_1 = (0, 0, 0), x_2 = (3, 0, 1), x_3 = (5, 4, -2)$. Calcular:

(a) $x_1 +_A x_2$

(e) $x_1 +_A x_2 +_A x_3$

(b) $x_1 +_B x_2$

(f) $x_1 +_A x_2 +_A x_3$

(c) $3 \cdot_A x_1 +_A (-2) \cdot_A x_2$

(d) $3 \cdot_B x_1 +_B (-2) \cdot_B x_2$

(g) $4 \cdot_A x_1 +_A (-5) \cdot_A x_2 +_A 2 \cdot_A x_3$ (h) $4 \cdot_B x_1 +_B (-5) \cdot_B x_2 +_B 2 \cdot_B x_3$

Determinar cuáles de las combinaciones lineales son combinaciones afines.

- (2) Sean en \mathbb{R}^2 los puntos A = (-1, 2), B = (3, -1)

 - (a) Determinar una base de \mathbb{R}^2_A que contenga a $x_1=(0,1)$ (b) Determinar una base de \mathbb{R}^2_B que contenga a $x_2=(4,-3)$
- (3) Sea en \mathbb{R}^2 el punto A = (4, -1). Determinar todos los $b \in \mathbb{R}$ para los cuales $\{(3, -5), (2, b)\}$ es base de \mathbb{R}^2_A .
- (4) Sea en \mathbb{R}^3 el punto A = (1, -1, 2)

 - (a) Determinar una base de \mathbb{R}^3_A que contenga a $x_1=(1,0,-1), x_2=(2,-1,1).$ (b) ¿Existe una base de \mathbb{R}^3_A que contenga a $x_1=(2,0,1)$ y $x_2=(3,1,0)$?
- (5) (a) Verificar que

$$S_1 = \{(1, 2, 1); (1, 1, 1), (0, 0, 1), (1, 0, 0)\}$$
y
 $S_2 = \{(1, -1, 1); (1, -1, 0), (1, 0, 1), (2, 2, 1)\}$

son sistemas de coordenadas afines en \mathbb{R}^3 .

- (b) Determinar las ecuaciones que permiten obtener las coordenadas (y_1, y_2, y_3) en el sistema S_2 de un punto $x \in \mathbb{R}^3$, en función de las coordenadas (x_1, x_2, x_3) del mismo en el sistema S_1 .
- (c) Existen puntos de \mathbb{R}^3 que tienen las mismas coordenadas en ambos sistemas?
- (6) Sean en \mathbb{R}^3 los puntos A = (1,2,3), B = (0,-1,2), C = (1,0,1), D = (0,1,4). Hallar en cada caso, si es posible, un sistema de coordenadas afines $S = \{H; v_1, v_2, v_3\}$ de manera que respecto de él, sean:
 - (a) A = (0,0,0), B = (1,0,0), C = (0,1,0), D = (0,0,1)
 - (b) A = (0,0,0), B = (1,0,0), C = (0,1,0), D = (1,-1,0)
- (7) Sean V un \mathbb{K} -espacio vectorial, y $A, B, C \in V$ contenidos en una recta L.
 - (a) Si $A \neq B$, verificar que $L = \{x \in V : x = A + \lambda(B A), \lambda \in \mathbb{K}\}.$

Si $A \neq B$ y $B \neq C$, sea $t \in \mathbb{K}$ tal que C = A + t(B - A). Se define la razón simple de A, B, C como el escalar $[A, B, C] = \frac{t}{1-t}$.

- (b) Sean $P,Q \in L$ $(P \neq Q)$. Siendo L el subespacio de V_Q generado por P, se tiene que $A = a \cdot_Q P, B =$ $b \cdot_Q P, C = c \cdot_Q P$. Verificar que si A, B, C son distintos entre sí, entonces $[A, B, C] = \frac{c-a}{b-c}$.
- (8) Teorema de Tales.

Sea V un \mathbb{K} -espacio vectorial, dim $V \geq 2$, y $\pi \subset V$ un plano. Sean $A, B, C, D \in \pi$, de a tres no colineales tales que $R_{AC} \parallel R_{BD}$. Sean $P \in R_{AB}$, $Q \in R_{CD}$ tales que $P \neq A, B, Q \neq C, D, P \neq Q$. Probar que son equivalentes

- (a) $R_{PQ} \parallel R_{AC}$
- (b) [A, B, P] = [C, D, Q]

(Dibujar.)

- (9) Hallar un conjunto de generadores afinmente independientes para la variedad lineal T
 - (a) $T = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0, y + z = 1\}$
 - (b) $M = T \vee T'$, siendo T y T' las variedades cuyas ecuaciones paramétricas respecto de la base canónica $de \mathbb{R}^3 son$

$$T:(x,y,z)=(t+1,-t+2,2t-2),$$
 $T':(x,y,z)=(t-1,2t+1,-t-1)$

(c) T la variedad lineal de \mathbb{R}^4 cuyas ecuaciones paramétricas respecto de la base canónica de \mathbb{R}^4 son:

$$(x, y, z, w) = (\alpha + \beta + 1, \alpha + \beta, -\gamma - \beta, \gamma - \alpha - 1)$$

(10) Sean T, T' las variedades lineales de \mathbb{R}^4 , cuyas ecuaciones implícitas respecto de la base canónica son

$$T: \left\{ \begin{array}{rcl} x-y & = & 1 \\ z+w & = & 0 \end{array} \right. \qquad T': \left\{ \begin{array}{rcl} x-y & = & 0 \\ y+z+w & = & 1 \end{array} \right.$$

Hallar $T \cap T'$ y $T \vee T'$.

(11) Dados los planos π, π' de \mathbb{R}^3 cuyas ecuaciones paramétricas respecto de la base canónica de \mathbb{R}^3 son:

$$\pi: \left\{ \begin{array}{lll} x & = & 6\lambda + 5\mu + 1 \\ y & = & \mu + 2 \\ z & = & 3\lambda - 1 \end{array} \right. \qquad \pi': \left\{ \begin{array}{lll} x & = & \lambda + 5\mu + 6 \\ y & = & -\lambda + \mu \\ z & = & 3\lambda + 5\mu + 4 \end{array} \right.$$

Determinar ecuaciones paramétricas:

- (a) de rectas L, L' paralelas tales que $L \subset \pi, L' \subset \pi'$
- (b) de rectas alabeades L, L' tales que $L \subset \pi, L' \subset \pi'$
- (c) de una recta $L' \subset \pi'$ que contenga al punto de coordenadas (6,0,4) y sea paralela a la recta $L \subset \pi$ definida por

$$L: \left\{ \begin{array}{ll} x & = & -2\lambda + 1 \\ y & = & 2\lambda + 2 \\ z & = & -6\lambda - 1 \end{array} \right.$$

(12) Sea T la variedad lineal de \mathbb{R}^4

$$T = (1,0,0,0) + \langle (1,0,0,-1), (0,1,2,0), (0,0,1,1) \rangle.$$

Determinar dos variedades lineales M_1, M_2 tales que $M_1 \cap M_2$ sea la variedad generada por los puntos (1,0,1,1), (-1,1,0,0), (0,1/2,1/2,1/2) y $T=M_1 \vee M_2$.

(13) Sea en \mathbb{R}^4 el plano

$$\pi: (1,1,-1,1) + \lambda(1,0,1,0) + \beta(-2,1,0,1).$$

Hallar planos π_1, π_2 cada uno de ellos alabeados con π tales que dim $(\pi_1 \vee \pi_2) = 3$.

- (14) Sea $\{A; v_1, v_2\}$ un sistema de coordenadas afines de \mathbb{R}^2 y $f : \mathbb{R}^2 \to \mathbb{R}^2$ la aplicación afín que transforma los puntos de coordenadas (1,3), (2,4), (2,1) en los puntos de coordenadas (2,1), (1,1), (2,2) respectivamente. Probar que f es un isomorfismo afín y hallar f^{-1} .
- (15) Definir una transformación afín $f: \mathbb{R}^3 \to \mathbb{R}^2$ tal que f(T) = T', siendo

$$T = \sigma((1, 1, 0), (0, 0, 1), (1, 0, -1))$$
 $T' = \sigma((3, 0), (4, -1)).$

(16) Sean en \mathbb{R}^3 las variedades lineales definidas por

$$M_1: \left\{ \begin{array}{ll} x+y &=& 1 \\ y+z &=& -1 \end{array} \right. \qquad M_2: x-y+z=0$$

Construir una transformación afín $f: \mathbb{R}^3 \to \mathbb{R}^3$ tal que $f(M_1) \subset M_2$ y $f(M_2) = M_1$.

(17) Sean en \mathbb{R}^4 las variedades lineales M_1, M_2, T_1, T_2 de ecuaciones

Construir una transformación afín $f: \mathbb{R}^4 \to \mathbb{R}^4$ tal que $f(M_1 \vee M_2) = T_1$, $f(M_1 \cap M_2) = T_2$ ¿Resulta $f \in GA(\mathbb{R}^4)$?

(18) Sean π, π' dos planos alabeados en \mathbb{R}^4 , y L, L' dos rectas de \mathbb{R}^4 tales que $L \subset \pi, L' \subset \pi'$.

- (a) Si $L \parallel L'$, probar que existe una transformación afín $f : \mathbb{R}^4 \to \mathbb{R}^4$ tal que $f(\pi) = L$ y $f(\pi') = L'$.
- (b) Si L y L' son alabeadas, ¿es posible definir una transformación afín $f: \mathbb{R}^4 \to \mathbb{R}^4$ tal que $f(\pi) = L$, $f(\pi') = L'$?