Álgebra Lineal — 2005

Práctica 12: Espacios vectoriales con producto interno.

- 1. Sea V un espacio vectorial sobre $k \in \{\mathbb{R}, \mathbb{C}\}$, y sea $\mathcal{B} = \{v_1, \dots, v_n\}$ una base de V.
 - *a*) Mostrar que existe exactamente un producto interno sobre V que hace de \mathcal{B} una base ortonormal.
 - b) Determinar ese producto interno explícitamente en los siguientes casos:

1)
$$V = \mathbb{R}^2$$
, $k = \mathbb{R}$, $\mathcal{B} = \{(1,1), (-1,-2)\}$;

2)
$$V = \mathbb{R}^3, k = \mathbb{R}, \mathcal{B} = \{(1,0,0), (1,1,0), (1,1,1)\};$$

3)
$$V = \mathbb{C}^3$$
, $k = \mathbb{C}$, $\mathcal{B} = \{(1,0,0), (1,1,0), (1,1,1)\}$;

4)
$$V = \mathbb{C}^4$$
, $k = \mathbb{C}$, $\mathcal{B} = \{(1,0,0,i), (0,1,0,i), (i,i,i,0), (0,2,0,0)\};$

5)
$$V = \mathbb{R}[X]_3, k = \mathbb{R}, \mathcal{B} = \{x^i\}_{i=0}^3$$
;

6)
$$V = \mathbb{R}[X]_3, k = \mathbb{R}, \mathcal{B} = \{(x-1)^i\}_{i=0}^3$$

2. Determinar para que valores de $a,b,c \in \mathbb{R}$ la forma bilineal

$$\phi(x,y) = ax_1y_2 + bx_1y_2 + bx_2y_1 + bx_2y_2 + (1+b)x_3y_3 + cx_1y_3$$

resulta un producto interno en \mathbb{R}^3 .

- 3. *a*) Determinar condiciones sobre una matriz $B \in M_n(\mathbb{R})$ de manera que $\langle x, y \rangle = x^t B y$ resulte un producto interno sobre \mathbb{R}^n .
 - *b*) Sea *V* un espacio vectorial con producto interno $\langle -, \rangle_V$, y sea *T* : $W \to V$ una transformación lineal. Definamos

$$\langle x, y \rangle_W = \langle Tx, Ty \rangle_V, \quad \forall x, y \in W.$$

Determinar condiciones necesarias y suficientes para que $\langle -, - \rangle_W$ resulte un producto interno.

- 4. Hallar los complementos ortogonales de los siguientes subespacios, describiendo bases ortonormales de los mismos:
 - a) $V = \mathbb{R}^3$, $S = \{(x_1, x_2, x_3) \in V : x_1 2x_2 + x_3 = 0\}$, con respecto al producto interno usual;
 - b) $V = \mathbb{R}^3$, $S = \langle (1,2,1) \rangle$, con respecto al producto interno dado por

$$\phi(x,y) = x_1y_2 + x_2y_2 + x_3y_3 - x_1y_2 - x_2y_1;$$

c) $V = \mathbb{R}[X]_4$, $S = \langle x^2, x^4 + x^2 + 1 \rangle$, con respecto al producto interno dado por

$$\phi(p,q) = \int_0^1 pq \, \mathrm{d}x;$$

d)
$$V = \langle f_1, f_2, f_3 \rangle \subset C^{\infty}(\mathbb{R}) \text{ con } f_1(x) = x, f_2(x) = e^x \text{ y } f_3(x) = x^2,$$

 $S = \langle f_1 + f_2 \rangle, \text{ y}$

$$\phi(f,g) = f(0)g(0) + \frac{1}{2}f(1)g(1) + f(\frac{1}{2})g(\frac{1}{2});$$

- 5. Sea $V = M_n(\mathbb{C})$, y $\phi(A, B) = \operatorname{tr} AB^*$. Mostrar que ϕ es un producto interno sobre V, y determinar el complemento ortogonal del subespacio de las matrices diagonales.
- 6. *a*) Sea $w: [-1,1] \to \mathbb{R}^+$ una función continua y positiva. Sea $n \in \mathbb{N}$ y $V = \mathbb{R}[X]_n$, y definamos

$$\phi(f,g) = \int_{-1}^{1} f(x)g(x)w(x) dx.$$

Muestre que ϕ es un producto interno sobre V.

- b) Realice el proceso de Gram-Schmidt a la base $\{1, X, X^2, X^3\}$ cuando n=3 y $w(x)\equiv 1$.
- 7. Sea p la proyección ortogonal de $V=\mathbb{R}^3$ sobre su subespacio $S=\{(x_1,x_2,x_3)\in V: 2x_1-x_2=0\}$ con respecto al producto interno usual.
 - *a*) Encontrar todas las rectas $L \subset V$ tales que $p(L) = \{(1,2,1)\}.$
 - b) Encontrar una recta $L_1 \subset V$ tal que $p(L_1) = L_2$, si $L_2 = \{x \in V : 2x_1 x_2 = x_1 x_3 = 0\}$.
- 8. Sea $V=\mathbb{R}^3$ con producto interno determinado por la matriz

$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}$$

y sea $\phi \in V^*$ tal que $\phi(x)=2x_1-2x_2-3x_3$. Encontrar $v \in V$ tal que $\phi=\langle -,v \rangle$.

- 9. Determinar f^* si
 - a) $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x_1, x_2) = (3x_1 + x_2, -x_1 + x_3)$;
 - b) $f: \mathbb{C}^3 \to \mathbb{C}^3$, $f(x_1, x_2, x_3) = (2x_1 + (1-i)x_2, x_2 + (3+2i)x_3, x_1 + ix_2 + x_3)$;

c) $f: \mathbb{R}^3 \to \mathbb{R}^3$ tal que si $\mathcal{B} = \{(1, 2, -1), (1, 0, 0), (0, 1, 1)\}$, entonces

$$[f]_{\mathcal{B},\mathcal{B}} = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix};$$

- *d*) $f: \mathbb{R}[X]_3 \to \mathbb{R}[X]_2$ tal que f(p) = p', con respecto a los productos internos dados por $\langle p, q \rangle = \int_{-1}^1 p(x) q(x) \, \mathrm{d}x$;
- *e*) $f: M_n(\mathbb{C}) \to M_n(\mathbb{C})$ tal que $f(A) = PAP^{-1}$, para una matriz inversible fija $P \in GL_n(\mathbb{C})$ y el producto interno $\langle A, B \rangle = \operatorname{tr} AB^*$ en $M_n(\mathbb{C})$.
- 10. *a*) Sea $f \in \text{End}(\mathbb{R}^3)$ tal que en la base canónica es

$$[f] = \begin{pmatrix} -1 & -3 & -2 \\ 4 & 6 & 2 \\ -3 & -3 & 0 \end{pmatrix}$$

Determinar un producto interno en \mathbb{R}^3 para el que f resulte autoadjunta.

- *b*) ¿Es cierto que para todo endomorfismo $f \in \operatorname{End}(V)$ de un espacio vectorial real de dimensión finita existe un producto interno $\langle -, \rangle$ para el cual $f^* = f$?
- 11. Sea V un espacio vectorial real de dimensión finita con un producto interno, y $S \subset V$ un subespacio. Mostrar que la proyección ortogonal de V en S es un endomorfismo autoadjunto de V. Determine sus autovalores. ¿Hay otros proyectores de V con imagen S que sean autoadjuntos?
- 12. *a*) Encontrar $P \in O_n(\mathbb{R})$ tal que PAP^t sea diagonal, si

1)
$$A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix};$$

2) $A = \begin{pmatrix} 2 & 0 & -2 \\ 0 & 7 & -2 \\ -2 & -2 & 6 \end{pmatrix};$
2) $A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}.$

b) Encontrar $U \in U_n(\mathbb{C})$ tal que PAP^* sea diagonal, si

1)
$$A = \begin{pmatrix} 4 & 1 & i & 0 \\ 1 & 3 & 2i & 1 \\ -i & -2i & 3 & i \\ 0 & 1 & -i & 2 \end{pmatrix}$$
; 2) $A = \begin{pmatrix} 2 & -1 & -i & 0 \\ -1 & 2 & -i & 0 \\ i & i & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}$.

- 13. Sea $V = M_n(\mathbb{C})$ con producto interno $\langle A, B \rangle = \operatorname{tr} AB^*$. Si $M \in M_n(\mathbb{C})$, sea $t_M : A \in V \to MA \in V$. Mostrar que t_M es un endomorfismo unitario sii M es unitaria.
- 14. *a*) Si *V* es un espacio vectorial real con un producto interno, es

$$\langle x, y \rangle = \frac{1}{4} ||x + y||^2 - \frac{1}{4} ||x - y||^2,$$

cualesquiera sean $x, y \in V$.

b) Si *V* es un espacio vectorial complejo con un producto interno, es

$$\langle x, y \rangle = \frac{1}{4} ||x + y||^2 - \frac{1}{4} ||x - y||^2 + \frac{i}{4} ||x + iy||^2 + \frac{i}{4} ||x - iy||^4,$$

cualesquiera sean $x, y \in V$.

- *c*) Mostrar que la suma de dos productos internos es un producto interno.
- 15. Sea V un espacio vectorial complejo de dimensión finita con un producto interno, y sea $T \in \text{End}(V)$ un endomorfismo autoadjunto. Mostrar:
 - a) ||v + iTv|| = ||v iTv||, cualquiera sea $v \in V$;
 - b) $v + iTv = w + iTw \sin v = w$;
 - c) Id + iT e Id iT son inversibles;
 - *d*) $U = (Id + iT)(Id iT)^{-1} \in \text{End}(V)$ es unitario—U se llama la *transformada de Cayley* de T;
 - e) el endomorfismo *U determina* a *T*.
- 16. Sea V un espacio vectorial complejo de dimensión finita con un producto interno, y sea T un operador normal, de manera que $TT^* = T^*T$.
 - a) $T = T_1 + iT_2$ con $T_1, T_2 \in \text{End}(V)$ operadores autoadjuntos que conmutan.
 - b) Si T es nilpontente, T = 0.
 - c) Existe $f \in \mathbb{C}[X]$ tal que $T^* = f(T)$.
- 17. Una matriz real cuadrada simétrica A posee una raíz cúbica simétrica.

David Hilbert