ALGEBRA LINEAL

Práctica 3: Espacio Dual

1. Sea $B' = \{\psi_1, \psi_2, \psi_3\}$ la base de $(\mathbb{R}^3)^*$ definida por:

$$\psi_1(x_1, x_2, x_3) = x_1 + x_2$$
 $\psi_2(x_1, x_2, x_3) = x_1 + x_3$ $\psi_3(x_1, x_2, x_3) = x_2 + x_3$

Hallar la base B de \mathbb{R}^3 tal que $B' = B^*$.

2. Sean f_1 , f_2 y $f_3 \in (\mathbb{R}_2[X])^*$ las siguientes formas lineales:

$$f_1(p) = \int_0^1 p(x) dx$$
 $f_2(p) = \int_0^2 p(x) dx$ $f_3(p) = \int_{-1}^0 p(x) dx$

Probar que $\{f_1, f_2, f_3\}$ es una base de $(\mathbb{R}_2[X])^*$. Hallar una base B de $\mathbb{R}_2[X]$ tal que $B^* = \{f_1, f_2, f_3\}$.

- 3. Sea $\psi \in (\mathbb{R}^3)^*$ definida por $\psi(x_1, x_2, x_3) = 2x_1 + 3x_2 x_3$ y sea $E^* = \{\delta_1, \delta_2, \delta_3\} \subseteq (\mathbb{R}^3)^*$ la base dual de la canónica.
 - *a*) Calcular las coordenadas de ψ en la base E^* .
 - *b*) Calcular las coordenadas de ψ en la base $B^* = \{\delta_1 + \delta_2 + \delta_3, \delta_1 + \delta_2, \delta_1\}.$
 - c) Sea $S \subseteq \mathbb{R}^3$ el subespacio $S = \{(x_1, x_2, x_3)/2x_1 + 3x_2 x_3 = 0\}$ y sea $B \subset \mathbb{R}^3$ la base $B = \{(0, 0, 1), (0, 1, -1), (1, -1, 0)\}$. Encontrar una ecuación para S en la base B.

(Sugerencia: notar que B^* es la base dual de B.)

4. Sean $B y B_1$ las bases de \mathbb{R}^3 definidas por

$$B = \{(1,1,0), (1,0,1), (0,1,1)\}$$
 y $B_1 = \{(1,1,-1), (1,-1,1), (-1,1,1)\}$

Si $\psi \in (\mathbb{R}^3)^*$ tiene coordenadas (1, -3, 2) respecto de B^* , calcular sus coordenadas respecto de B_1^* .

5. Hallar bases de S° en los siguientes casos:

a)
$$V = \mathbb{R}^3$$
, $S = \langle (1, -1, 5), (1, 5, 0) \rangle$;

b)
$$V = \mathbb{R}^4$$
, $S = \langle (1, -1, 1, -1), (1, 2, 3, 4) \rangle$;

c)
$$V = \mathbb{R}^3$$
, $S = \{(x_1, x_2, x_3) : x_1 + x_2 + 2x_3 = 0, x_1 - 3x_3 = 0\}$;

d)
$$V = \mathbb{R}^5$$
, $S = \{(x_1, x_2, x_3, x_4, x_5) : x_1 + 2x_2 = 0, x_3 + x_4 + x_5 = 0\}$;

e)
$$V = \mathbb{R}[X]_4$$
, $S = \{1 + X + X^2, 2 + X^3 + 2X^4, X^3\}$.

- 6. Sea $B=\begin{pmatrix}2&-2\\1&-1\end{pmatrix}$ y sea $W=\{A\in M_2(k):AB=0\}$. Determinar $W^\circ.$
- 7. Determinar bases de $(S + T)^{\circ}$ y de $(S \cap T)^{\circ}$:

a)
$$V = \mathbb{R}^4$$
, $S = \langle (1, -1, 2, 1), (2, -1, 3, 1) \rangle$, $T = \langle (3, -2, 5, 1), (0, 1, 1, 1) \rangle$;

b)
$$V = \mathbb{R}^4$$
, $S = \langle (1,2,1,2), (1,-2,1,-2) \rangle$, $T = \{(x,y,z,w) \in \mathbb{R}^4 : 2x - y - 2z + w = 0, x + y + z = 0\}$.

c)
$$V = \mathbb{R}^3$$
, $S = \{(x, y, z) \in \mathbb{R}^3 : 2x - y = 0\}$, $T = \{(x, y, z) \in \mathbb{R}^3 : x - 2y + z = 0, 2y - 2z = 0\}$.

- 8. Si V es un espacio vectorial, y S, T son subespacios de V tales que $V = S \oplus T$, probar que $V^* = S^\circ \oplus T^\circ$.
- 9. Sea k un cuerpo finito, y V un espacio vectorial de dimensión n sobre k. Sea $0 \le l \le n$. Mostrar que V posee tantos subespacios de dimensión l como subespacios de dimensión n l.
- 10. Sean V y W k-espacios vectoriales y sea $f:V\to W$ una transformación lineal. Se define la función $f^t:W^*\to V^*$ de la siguiente manera:

$$f^t(\psi) = \psi \circ f \ \forall \, \psi \in W^*$$

La función f^t se llama la función **traspuesta** de f.

- a) Probar que f^t es una transformación lineal.
- b) Probar que $(\operatorname{im} f)^{\circ} = \ker f^{t}$ y que $\operatorname{im} f^{t} = (\ker f)^{\circ}$.
- c) Sean $V = \mathbb{R}^2$ y $W = \mathbb{R}^3$ y sea $f(x_1, x_2) = (2x_1 x_2, 3x_1, x_1 2x_2)$. Si $B = \{(1, 2), (1, 3)\}$ y $B_1 = \{(1, 1, 1), (1, 1, 0), (1, 0, 0)\}$, calcular $[f]_{BB_1}$ y $[f^t]_{B_1^*B^*}$.
- *d*) Si B y B_1 son bases finitas de V y W respectivamente, probar que $[f^t]_{B_1^*B^*} = ([f]_{BB_1})^t$.
- 11. Sea $f: k^5 \to k^4$ la transformación lineal cuya matriz con respecto a las bases canónicas es

$$\begin{pmatrix}
1 & 1 & -1 & 1 & 0 \\
-1 & -1 & 1 & 0 & 0 \\
0 & 1 & -1 & 1 & 1 \\
-1 & 1 & 0 & -1 & 0
\end{pmatrix}$$

Determinar el anulador del núcleo de f, la imagen de f^t , y una transformación lineal $g: k^4 \to k^5$ tal que $f \circ g = \mathcal{U}$.

- 12. Sea $V = M_n(k)$ el espacio vectorial de las matrices $n \times n$, y $S \subset V$ el subespacio de las matrices simétricas. Determinar una base para S° .
- 13. Sea $f: k^3 \to k$ tal que $f(x_1, x_2, x_3) = x_1 2x_2 + x_3$, y $g: k^3 \to k^3$ tal que su matriz con respecto a la base $\{(1, -1, 2), (-3, 5 1), (1, 3, -3)\}$ es

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Describa el anulador de ker $f + \ker g$.

- 14. Sea $f: V \to V$ un endomorfismo de un espacio vectorial V de dimensión finita. Mostrar que f posee núcleo no trivial sii f^t posee núcleo no trivial.
- 15. Sea V un espacio vectorial de dimensión finita, $S \subseteq V$ un subconjunto, y $L: V \to V^{**}$ el isomorfismo canónico. ¿Qué relación hay entre L(S), $S^{\circ\circ}$ y S?
- 16. Sea V un espacio vectorial de dimensión finita, y $\phi_1, \ldots, \phi_n \in V^*$. Mostrar que $\{\phi_1, \ldots, \phi_n\}$ es una base de V^* si y sólo si

$$\bigcap_{1\leq i\leq n}\ker\phi_i=\{0\}.$$

17. Sea tr : $k^{n \times n} \rightarrow k$ la forma lineal traza. Dado $a \in k^{n \times n}$ se define:

$$f_a: k^{n \times n} \to k \text{ como } f_a(x) = \text{tr}(ax).$$

- *a*) Probar que $f_a \in (k^{n \times n})^*$ para todo $a \in k^{n \times n}$.
- *b*) Probar que si $f_a(x) = 0$ para todo $x \in k^{n \times n}$, entonces a = 0.
- c) Se define $\gamma: k^{n \times n} \to (k^{n \times n})^*$ como $\gamma(a) = f_a$. Probar que γ es un isomorfismo.
- *d*) Sea $f: \mathbb{R}^{2\times 2} \to \mathbb{R}$ definida por:

$$f\left(\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right) = 3a_{11} - 2a_{12} + 5a_{22}$$

Encontrar una matriz $a \in \mathbb{R}^{2 \times 2}$ tal que $\gamma(a) = f$.

18. Sea V un espacio vectorial de dimensión finita sobre k. Sean f, $g:V \to k$ transformaciones lineales no nulas. Probar que:

$$\exists \ \alpha \in k, \ \alpha \neq 0 \ / \ f = \alpha g \iff \ker f = \ker g$$

19. Sea V un espacio vectorial y \mathcal{B} una base de V. Sea \mathcal{B}^* la base dual de \mathcal{B} en V^* , y \mathcal{B}^{**} la base dual de \mathcal{B}^* en V^{**} . Determine la matriz que representa al isomorfismo canónico $V \to V^{**}$ con respecto a las bases \mathcal{B} , \mathcal{B}^{**} .