Maestría en Estadística

Algebra Lineal

Práctica 3

- 1. i) Sean A = (1, 2, -1), B = (1, -1, 1). Hallar $C \neq 0$ tal que A, C > 0.
 - ii) Sea A = (1, -1). Hallar B tal que A, B > 0 y ||A|| = ||B||.
 - iii) Sea A=(-2,1). Hallar todos los vectores $v\in \mathbb{R}^2$ tales que ||v||=||A|| y < v,A>=0.
 - iv) Sea A = (0, 0, 2). Hallar todos los vectores $v \in \mathbb{R}^3$ tales que ||v|| = ||A|| y $\langle v, A \rangle = 0$.
- **2.** Decidir si son o no ciertas las siguientes proposiciones en \mathbb{R}^2 y en \mathbb{R}^3 :
 - i) Si $\langle A, B \rangle = \langle A, C \rangle$ y $A \neq 0 \Rightarrow B = C$.
 - ii) Si $\langle A, B \rangle = 0, \forall B \Rightarrow A = 0.$
- 3. i) Sean $v_1 = (1, 2)$ y $v_2 = (-1, 1)$ y $w \in \mathbb{R}^2$ tales que $\langle v_1, w \rangle = 1$ y $\langle v_2, w \rangle = 3$. Hallar w
 - ii) Sean $z_1 = (\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}})$ y $z_2 = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$. Probar que, $\forall w \in \mathbb{R}^2$ se tiene que $w = \langle w, z_1 \rangle z_1 + \langle w, z_2 \rangle z_2$.
- 4. i) Aplicar el proceso de Gram-Schmidt a la base $\mathcal{B} = \{(1,0,1); (0,1,-1); (1,1,1)\}$ para obtener una base ortonormal \mathcal{B}' .
 - ii) Calcular las coordenadas de v=(1,1,1) y de w=(1,0,0) en \mathcal{B}' . Sug: recuerde < , >.
 - iii) Hallar una base ortonormal de IR³ que contenga una base del plano

$${x \in \mathbb{R}^3 : x_1 - 3x_2 + x_3 = 0}$$

- 5. Sea W=<(3,4)>y p la proyección ortogonal sobre W. Hallar:
 - i) Una fórmula para $p(x_1, x_2)$.
 - ii) $[p]_{\mathcal{E}}$.
 - iii) W^{\perp}

- iv) Una base ortonormal B tal que $[p]_{\mathcal{B}} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$
- **6.** Sean $S = \{(x_1, x_2, x_3)/2x_1 x_2 = 0\}$ y p la proyección ortogonal sobre S. Hallar:
 - i) Una base \mathcal{B} ortonormal del subespacio S.
 - ii) $M \in \mathbb{R}^{3 \times 2}$ la matriz que tiene por columnas a los vectores de \mathcal{B} .
 - iii) Verificar que $[p]_{\mathcal{E}} = M.M^t$.
- 7. Hallar una base ortonormal y el complemento ortogonal para cada uno de los subespacios que siguen:
 - i) $S_1 = \{\lambda(1, 2, 1); \lambda \in \mathbb{R}\}$
 - ii) $S_2 = \{x \in \mathbb{R}^3 / 3x_1 + x_2 = 0\}$
 - iii) $S_3 = \{x \in \mathbb{R}^2 / x_1 + 2x_2 = 0\}$
- 8. Sea \mathcal{B}' la base hallada en el ejercicio 4. Calcular $Q = C_{\mathcal{BB}'}$, siendo \mathcal{B} otra base ortonormal. Verificar que $QQ^t = Id$.
- **9.** Sea $A \in \mathbb{R}^{n \times n}$ una matriz simétrica. Pruebe que Nu(A) es ortogonal a Im(A).
- 10. Encontrar una tercera columna para que la matriz Q sea ortogonal siendo $Q=\begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & 0 \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$. ¿Cuántas soluciones hay? Interprete geométricamente.
- **11.** Hallar la recta y = ax + b que ajusta por cuadrados mínimos la tabla y calcular el error $\sum (y_k (ax_k + b))^2$.

12. Mismo ejercicio con la siguiente tabla:

Estimar el valor de y correspondiente a x = 7.5.

13. Ajustar una parábola por el método de los cuadrados mínimos de acuerdo a la siguiente tabla:

Rta: $y = 0.9433 + 1.3507x - 0.1189x^2$.