ÁLGEBRA LINEAL

Práctica N°3: Coordenadas - Transformaciones lineales

Coordenadas

Ejercicio 1. Encontrar las coordenadas de $v \in V$ respecto de la base B en los siguientes casos:

- i) $V = K^n$; $v = (x_1, ..., x_n)$ y B la base canónica
- ii) $V = \mathbb{R}^3$; v = (1, 2, -1) y $B = \{(1, 2, -1), (0, 1, 1), (0, 0, 2)\}$
- iii) $V = \mathbb{R}^3$; v = (1, -1, 2) y $B = \{(1, 2, -1), (2, 1, 3), (1, 3, 2)\}$
- iv) $V = \mathbb{R}^3$; $v = (x_1, x_2, x_3)$ y $B = \{(1, 2, -1), (2, 1, 3), (1, 3, 2)\}$
- v) $V = \mathbb{R}_3[X]$; $v = 2X^2 X^3$ y $B = \{3, 1 + X, X^2 + 5, X^3 + X^2\}$

vi)
$$V = \mathbb{R}^{2 \times 2}$$
; $v = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ y $B = \left\{ \begin{pmatrix} 1 & 3 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 4 \\ 3 & 2 \end{pmatrix}, \begin{pmatrix} 0 & 2 \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 2 & 5 \end{pmatrix} \right\}$

Ejercicio 2. Calcular C(B, B') en los siguientes casos:

- i) $V = \mathbb{R}^2$, $B = \{(1,1), (1,2)\}$, $B' = \{(-1,3), (2,5)\}$
- ii) $V = \mathbb{R}^3$, $B = \{(1,1,0), (0,1,1), (1,0,1)\}$, $B' = \{(-1,1,1), (2,0,1), (1,-1,3)\}$
- iii) $V = \mathbb{R}^3$, $B = \{(1,1,0), (0,1,1), (1,0,1)\}$, $B' = \{(0,1,1), (1,0,1), (1,1,0)\}$
- iv) $V = \mathbb{R}_2[X]$, $B = \{3, 1 + X, X^2\}$, $B' = \{1, X + 3, X^2 + X\}$
- v) $V = \mathbb{R}^4$, $B = \{v_1, v_2, v_3, v_4\}$, $B' = \{v_3, v_1, v_4, v_2\}$

$$\text{iv)} \ \ V = \mathbb{R}^{2\times 2} \ , \ \ B = \{E^{11}, E^{12}, E^{21}, E^{22}\}, \quad B' = \left\{ \begin{pmatrix} 1 & 3 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 4 \\ 3 & 2 \end{pmatrix}, \begin{pmatrix} 0 & 2 \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 2 & 5 \end{pmatrix} \right\}$$

Ejercicio 3. Dado $v \in V$ y las bases B y B', hallar las coordenadas de v respecto de B y utilizando la matriz de cambio de base, las coordenadas de v respecto de B'.

- i) v = (2,3) y B, B' como en el Ejercicio 2, i)
- ii) v = (-1, 5, 6) y B , B' como en el Ejercicio 2, ii)
- iii) v = (-1, 5, 6) y B, B' como en el Ejercicio 2, iii)
- iv) $v = 2.v_1 + 3.v_2 5.v_3 + 7.v_4$ y B, B' como en el Ejercicio 2, v)
- v) $v = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ y B , B' como en el Ejercicio 2, vi)

Ejercicio 4.

i) Sean $A, B \in K^{n \times n}$ tales que, $\forall x \in K^n, A.x = B.x$. Probar que A = B.

- ii) Sea V un K-espacio vectorial de dimensión n y sean B, B' y B'' bases de V. Probar que C(B,B'')=C(B',B'').C(B,B')
- ii) Deducir que $C(B, B') \in GL(n, K)$ con $C(B, B')^{-1} = C(B', B)$

Ejercicio 5. Dada la matriz $M = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$ y la base $B = \{v_1, v_2, v_3\}$ de K^3 , hallar una base B' tal que M = C(B, B')

Ejercicio 6. Dada la matriz $M = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$ y la base $B' = \{v_1, v_2, v_3\}$ de K^3 , hallar una base B tal que M = C(B, B')

Transformaciones lineales

Ejercicio 7. Determinar cuáles de las siguientes aplicaciones son lineales

i)
$$f: \mathbb{R}^3 \to \mathbb{R}^2$$
, $f(x_1, x_2, x_3) = (x_2 - 3.x_1 + \sqrt{2}.x_3, x_1 - \frac{1}{2}.x_2)$

ii)
$$f: \mathbb{R}^2 \to \mathbb{R}^3$$
, $f(x_1, x_2) = (x_1 - x_2, 2.x_2, 1 + x_1)$

iii)
$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
, $f(x_1, x_2, x_3) = (2.x_1 - 7.x_3, 0, 3.x_2 + 2.x_3)$

iv)
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
, $f(x_1, x_2) = (x_1 + x_2, |x_1|)$

- v) $f:\mathbb{C}\to\mathbb{C}$, f(z)=i.z (considerando a \mathbb{C} como \mathbb{R} -espacio vectorial y como \mathbb{C} -espacio vectorial.)
- vi) $f:\mathbb{C}\to\mathbb{C}\;,\;f(z)=i.Im(z)$ (considerando a \mathbb{C} como IR-espacio vectorial y como \mathbb{C} -espacio vectorial.)
- vii) $f:\mathbb{C}\to\mathbb{C}$, $f(z)=\overline{z}$ (considerando a \mathbb{C} como \mathbb{R} -espacio vectorial y como \mathbb{C} -espacio vectorial.)

viii)
$$f: \mathbb{R}^{2\times 2} \to \mathbb{R}$$
, $f\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = a_{11}.a_{22} - a_{12}.a_{21}$

ix)
$$f: \mathbb{R}^{2\times 3} \to \mathbb{R}^3$$
, $f\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} = (3.a_{13} - a_{23}, a_{11} + 2.a_{22} - a_{23}, a_{22} - a_{12})$

x)
$$f: \mathbb{R}^{2 \times 2} \to \mathbb{R}^{2 \times 3}$$
, $f\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \begin{pmatrix} a_{22} & 0 & a_{12} + a_{21} \\ 0 & a_{11} & a_{22} - a_{11} \end{pmatrix}$

xi)
$$f: \mathbb{C}^{2\times 2} \to \mathbb{C}^{2\times 2}$$
, $f\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \begin{pmatrix} a_{11} & \overline{a_{12}} \\ \overline{a_{21}} & a_{22} \end{pmatrix}$ (considerando a $\mathbb{C}^{2\times 2}$ como \mathbb{R} -espacio vectorial y como \mathbb{C} -espacio vectorial.)

Ejercicio 8. Interpretar geométricamente las siguientes aplicaciones lineales $f: \mathbb{R}^2 \to \mathbb{R}^2$

i)
$$f(x,y) = (x,0)$$

ii)
$$f(x,y) = (0,y)$$

iii)
$$f(x,y) = (x, -y)$$

iv)
$$f(x,y) = (\frac{1}{2}.(x+y), \frac{1}{2}.(x+y))$$

v)
$$f(x,y) = (x.\cos t - y.\sin t, x.\sin t + y.\cos t)$$

Ejercicio 9.

- i) Encontrar una función $f: V \to V$ (para un K-espacio vectorial V conveniente) que cumpla f(v+w) = f(v) + f(w) para cualquier par de vectores $v, w \in V$ pero que no sea una transformación lineal.
- ii) Encontrar una función $f: V \to V$ (para un K-espacio vectorial V conveniente) que cumpla f(k.v) = k.f(v) para cualquier escalar $k \in K$ y cualquier vector $v \in V$ pero que no sea una transformación lineal.

Ejercicio 10. Probar la linealidad de las siguientes aplicaciones:

- i) $tr: K^{n \times n} \to K$
- ii) $t: K^{n \times m} \to K^{m \times n}$, $t(A) = A^t$
- iii) $f: K^{n \times m} \to K^{r \times m}$, f(A) = B.A donde $B \in K^{r \times n}$
- iv) $\delta: C^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R})$, $\delta(f) = f'$
- v) $\epsilon_{\alpha}: K[X] \to K$, $\epsilon_{\alpha}(f) = f(\alpha)$ donde $\alpha \in K$
- vi) $s: K^{\mathbb{N}} \to K^{\mathbb{N}}$, $s(\{a_i\}_{i \in \mathbb{N}}) = (0, a_1, a_2, ..., a_n, ...)$

Ejercicio 11.

- i) Probar que existe una única transformación lineal $f: \mathbb{R}^2 \to \mathbb{R}^2$ tal que f(1,1) = (-5,3) y f(-1,1) = (5,2). Para dicha f, determinar f(5,3) y f(-1,2)
- ii) ¿Existirá una transformación lineal $f: \mathbb{R}^2 \to \mathbb{R}^2$ tal que f(1,1)=(2,6); f(-1,1)=(2,1) y f(2,7)=(5,3)?
- iii) Sean f, $g: \mathbb{R}^3 \to \mathbb{R}^3$ transformaciones lineales tales que f(1,0,1)=(1,2,1), f(2,1,0)=(2,1,0), f(-1,0,0)=(1,2,1), g(1,1,1)=(1,1,0), g(2,2,-1)=(3,-1,2) y g(3,2,1)=(0,0,1). Determinar si f=g.
- iv) Hallar todos los $a \in \mathbb{R}$ para los cuales exista una transformación lineal $f : \mathbb{R}^3 \to \mathbb{R}^3$ que satisfaga que f(1,-1,1) = (2,a,-1), $f(1,-1,2) = (a^2,-1,1)$ y f(1,-1,-2) = (5,-1,-7)
- v) Hallar una fórmula para todas las transformaciones lineales $f: \mathbb{R}_3[X] \to \mathbb{R}^3$ que satisfacen $f(X^3+2X^2-X+4)=(6,5,3)$, $f(3X^2+2X-5)=(0,0,-3)$, $f(X^3-2X^2+3X-2)=(0,-1,1)$ y $f(2X^3-3X^2+7)=(6,4,7)$

Ejercicio 12.

- i) Calcular bases del núcleo y de la imagen para cada tranformación lineal del ejercicio 7. Decidir, en cada caso, si f es epimorfismo, monomorfismo o isomorfismo. En el caso que sea isomorfismo, calcular f^{-1}
- ii) Clasificar las transformaciones lineales tr, t, δ , ϵ_{α} y s del ejercicio 10 en epimorfismos, monomorfismos e isomorfismos.

Ejercicio 13. Sean $f: \mathbb{R}^3 \to \mathbb{R}^4$, $f(x_1, x_2, x_3) = (x_1 + x_2, x_1 + x_3, 0, 0)$ y $g: \mathbb{R}^4 \to \mathbb{R}^2$, $g(x_1, x_2, x_3, x_4) = (x_1 - x_2, 2x_1 - x_2)$ Calcular el núcleo y la imagen de f, de g y de $g \circ f$. Decidir si son monomorfismos, epimorfismos o isomorfismos.

3

Ejercicio 14. Sean $g: V \to V'$ y $f: V' \to V''$ transformaciones lineales. Probar

- i) $Nu(g) \subseteq Nu(f \circ g)$
- ii) Si $\mathrm{Nu}(f)\cap\mathrm{Im}(g)=\{0\}$, entonces $\mathrm{Nu}(g)=\mathrm{Nu}(f\circ g)$
- iii) $\operatorname{Im}(f \circ g) \subseteq \operatorname{Im}(f)$
- iv) Si Im(g) = V', entonces $\text{Im}(f \circ g) = \text{Im}(f)$

Ejercicio 15.

- i) Sean S, $T \subset \mathbb{R}^4$ definidos por $S = \{(x_1, x_2, x_3, x_4)/x_1 + x_2 + x_3 = 0\}$ y $T = \{(x_1, x_2, x_3, x_4)/2.x_1 + x_4 = 0, x_2 x_3 = 0\}$. ¿Existirá algún isomorfismo $f: \mathbb{R}^4 \to \mathbb{R}^4$ tal que f(S) = T?
- ii) ¿Existirá algún monomorfismo $f: \mathbb{R}^3 \to \mathbb{R}^2$?
- iii) ¿Existirá algún epimorfismo $f: \mathbb{R}^2 \to \mathbb{R}^3$?
- iv) Sean $v_1=(1,0,1,0)$, $v_2=(1,1,1,0)$ y $v_3=(1,1,1,1)$. ¿Existirá alguna transformación lineal $f:\mathbb{R}^2\to\mathbb{R}^4$ tal que $\{v_1,v_2,v_3\}\subset \mathrm{Im}(f)$?

Ejercicio 16. Determinar si existe (y en caso afirmativo hallar) una transformación lineal $f: \mathbb{R}^3 \to \mathbb{R}^4$ que verifique $\operatorname{Im}(f) = S$ y $\operatorname{Nu}(f) = T$ en los siguientes casos

i)
$$S = \{(x_1, x_2, x_3, x_4)/x_1 + x_2 - x_3 + 2.x_4 = 0\}$$
, $T = <(1, 2, 1) >$

ii)
$$S = \{(x_1, x_2, x_3, x_4)/x_1 + x_2 = 0, x_3 + x_4 = 0\}, T = <(1, -2, 1) >$$

Ejercicio 17. En cada uno de los siguientes casos encontrar una transformación lineal $f: \mathbb{R}^3 \to \mathbb{R}^3$ que verifique lo pedido:

- i) $(1,1,0) \in \text{Nu}(f) \text{ y dim}(\text{Im}(f)) = 1$
- ii) $Nu(f) \cap Im(f) = \langle (1, 1, 2) \rangle$
- iii) $f \neq 0$ y $Nu(f) \subseteq Im(f)$
- iv) $f \neq 0$ y $f \circ f = 0$
- v) $f \neq Id$ y $f \circ f = Id$
- vi) $Nu(f) \neq \{0\}$, $Im(f) \neq \{0\}$ y $Nu(f) \cap Im(f) = \{0\}$

Ejercicio 18. Sea V un K-espacio vectorial de dimensión n y sea $B = \{v_1, ..., v_n\}$ una base de V. Se define la aplicación $\alpha_B : V \to K^n$ de la siguiente manera:

Si
$$v = \sum_{i=1}^{n} x_i v_i$$
, $\alpha_B(v) = (x_1, ..., x_n)$

Probar que α_B es un isomorfismo. Observar que, teniendo en cuenta que la aplicación α_B es tomar coordenadas en la base B, esto nos permite trabajar con coordenadas en una base en el siguiente sentido:

i) $\{w_1, ..., w_s\}$ es linealmente independiente en $V \iff \{\alpha_B(w_1), ..., \alpha_B(w_s)\}$ es linealmente independiente en K^n

- ii) $\{w_1,...,w_r\}$ es un sistema de generadores de $V\iff \{\alpha_B(w_1),...,\alpha_B(w_r)\}$ es un sistema de generadores de K^n
- iii) $\{w_1,...,w_n\}$ es una base de $V \iff \{\alpha_B(w_1),...,\alpha_B(w_n)\}$ es una base de K^n Por ejemplo, para decidir si $\{X^2-X+1\ ,\ X^2-3.X+5\ ,\ 2.X^2+2.X-3\}$ es una base de $\mathbb{R}_2[X]$, bastará ver si $\{(1,-1,1)\ ,\ (1,-3,5)\ ,\ (2,2,-3)\}$ es una base de \mathbb{R}^3 para lo que se puede usar el método de triangulación. Rehacer los items ii) y iii) de los ejercicios 34 y 35 de la práctica $\mathbb{N}^\circ 1$ utilizando coordenadas.

Ejercicio 19. Sea V un K-espacio vectorial y $f:V\to V$ una transformación lineal. Probar que $f\circ f=f\iff f(v)=v\ \forall\,v\in\mathrm{Im}(f)$ Una transformación lineal que cumple esto se llama **proyector**.

Ejercicio 20. En cada uno de los siguientes casos construir un proyector $f: \mathbb{R}^3 \to \mathbb{R}^3$ que cumpla

- i) $\operatorname{Im}(f) = \{(x_1, x_2, x_3)/x_1 + x_2 + x_3 = 0\}$
- ii) $Nu(f) = \{(x_1, x_2, x_3)/x_1 + x_2 + x_3 = 0\}$
- iii) $Nu(f) = \{(x_1, x_2, x_3)/3.x_1 x_3 = 0\} \text{ e Im}(f) = <(1, 1, 1) >$

Ejercicio 21. Sea V un K-espacio vectorial y $f:V\to V$ un proyector. Probar

- i) $V = \text{Nu}(f) \oplus \text{Im}(f)$
- ii) $g = id_V f$ es un proyector con Im(g) = Nu(f) y Nu(g) = Im(f)

Ejercicio 22. Sea V un K-espacio vectorial de dimensión n y sean S y T subespacios de V tales que $V = S \oplus T$. Probar que existe un único proyector $f: V \to V$ tal que $\operatorname{Nu}(f) = S$ e $\operatorname{Im}(f) = T$.

Ejercicio 23. Sea V un K-espacio vectorial y $f:V\to V$ una transformación lineal. Se dice que f es nilpotente si $\exists s\in\mathbb{N}\ /\ f^s=0$

- i) Probar que si f es nilpotente, entonces f no es ni monomorfismo ni epimorfismo.
- ii) Si V es de dimensión n probar que f es nilpotente $\iff f^n = 0$ (Sugerencia: considerar si las inclusiones $\operatorname{Nu}(f^i) \subseteq \operatorname{Nu}(f^{i+1})$ son estrictas o no).
- iii) Sea $B = \{v_1, ..., v_n\}$ una base de V. Se define la transformación lineal $f: V \to V$ de la siguiente forma:

$$f(v_i) = \begin{cases} v_{i+1} & \text{si } 1 \le i \le n-1 \\ 0 & \text{si } i = n \end{cases}$$

Probar que $f^n = 0$ y $f^{n-1} \neq 0$.

iv) Si $V = \mathbb{R}^n$, para cada i, $2 \le i \le n$ construir una transformación lineal nilpotente $f: \mathbb{R}^n \to \mathbb{R}^n$ tal que $f^i = 0$ y $f^{i-1} \ne 0$.

Ejercicio 24. Sea $S = <(1, 1, 0, 1), (2, 1, 0, 1) > \subseteq \mathbb{R}^4$.

- i) Hallar una transformación lineal $f: \mathbb{R}^4 \to \mathbb{R}^2$ tal que Nu(f) = S.
- ii) Hallar ecuaciones para S (usar i))
- iii) Hallar un sistema de ecuaciones lineales cuyo conjunto de soluciones sea <(1,1,0,1),(2,1,0,1)>+(0,1,1,2)

Ejercicio 25.

- i) Sea $S \subseteq K^n$ el conjunto de soluciones de un sistema lineal homogéneo. Encontrar una transformación lineal $f: K^n \to K^n$ tal que Nu(f) = S
- ii) Sea $T \subseteq K^n$ el conjunto de soluciones de un sistema lineal no homogéneo. Encontrar una transformación lineal $f: K^n \to K^n$ y $x \in K^n$ tales que $T = f^{-1}(x)$

Ejercicio 26. Sea $f: V \to V$ una tranformación lineal y B, B' bases de V, calcular $|f|_{BB'}$ en cada uno de los siguientes casos:

- i) $V = \mathbb{R}^3$, $f(x_1, x_2, x_3) = (3.x_1 2.x_2 + x_3, 5.x_1 + x_2 x_3, x_1 + 3.x_2 + 4.x_3)$, B = B' la base canónica de \mathbb{R}^3
- ii) $V = \mathbb{R}^3$, $f(x_1, x_2, x_3) = (3.x_1 2.x_2 + x_3, 5.x_1 + x_2 x_3, x_1 + 3.x_2 + 4.x_3)$, $B = \{(1, 2, 1), (-1, 1, 3), (2, 1, 1)\}$ $y B' = \{(1, 1, 0), (1, 2, 3), (-1, 3, 1)\}$
- iii) $V=\mathbb{C}^2$, $f(x_1,x_2)=(2.x_1-i.x_2,x_1+x_2)$, B=B' es la base canónica de \mathbb{C}^2 como \mathbb{C} -espacio vectorial.
- iv) $V = \mathbb{C}^2$, $f(x_1, x_2) = (2.x_1 i.x_2, x_1 + x_2)$, $B = B' = \{(1, 0), (0, 1), (i, 0), (0, i)\}$ considerando a \mathbb{C}^2 como \mathbb{R} -espacio vectorial.

v)
$$V = \mathbb{R}_4[X]$$
, $f(P) = P'$, $B = B' = \{1, X, X^2, X^3, X^4\}$

vi)
$$V = \mathbb{R}_4[X]$$
, $f(P) = P'$, $B = B' = \{X^4, X^3, X^2, X, 1\}$

vii)
$$V = \mathbb{R}_4[X]$$
, $f(P) = P'$, $B = \{1, X, X^2, X^3, X^4\}$, $B' = \{X^4, X^3, X^2, X, 1\}$

- viii) $V = \mathbb{R}^{2\times 2}$, $f(A) = A^t$, B = B' la base canónica de $\mathbb{R}^{2\times 2}$
- ix) V, f v B = B' como en el ejercicio 23, iii)

Ejercicio 27. Sea $B = \{v_1, v_2, v_3\}$ una base de \mathbb{R}^3 y $B' = \{w_1, w_2, w_3, w_4\}$ una base de \mathbb{R}^4 . Sea $f : \mathbb{R}^3 \to \mathbb{R}^4$ la transformación lineal tal que

$$|f|_{BB'} = \begin{pmatrix} 1 & -2 & 1\\ -1 & 1 & -1\\ 2 & 1 & 4\\ 3 & -2 & 5 \end{pmatrix}$$

- i) Hallar $f(3.v_1 + 2.v_2 v_3)$ ¿Cuáles son sus coordenadas en la base B'?
- ii) Hallar una base de Nu(f) y una base de Im(f).
- iii) Describir el conjunto $f^{-1}(w_1 3.w_3 w_4)$

Ejercicio 28. Sea $A \in K^{m \times n}$ y $\theta_A : K^n \to K^m$ la transformación lineal definida por $\theta_A(x) = A.x$. Si E y E' son las bases canónicas de K^n y de K^m respectivamente, probar que $|\theta_A|_{EE'} = A$.

Ejercicio 29. Sean V y W K-espacios vectoriales y sea

$$\operatorname{Hom}(V, W) = \{f : V \to W/f \text{ es lineal}\}\$$

- i) Probar que $\operatorname{Hom}(V, W)$ es un K-espacio vectorial con las operaciones naturales.
- ii) Si dim V = n y dim W = m, sean B y B' bases de V y de W respectivamente. Sea $T : \text{Hom}(V, W) \to K^{m \times n}$ la aplicación definida por $T(f) = |f|_{BB'}$. Probar que T es lineal y que es un isomorfismo. Calcular dim (Hom(V, W)).

Ejercicio 30. Sean V, W y U K-espacios vectoriales de dimensión finita y sean B, B' y B'' bases de V, W y U respectivamente. Se consideran las transformaciones lineales $f: V \to W$ y $g: W \to U$. Probar que $|g \circ f|_{BB''} = |g|_{B'B''}.|f|_{BB'}$

Ejercicio 31. Sean V y W K-espacios vectoriales de dimensión finita y sea $f:V\to W$ lineal. Si B y B' son bases de V y U y U' son bases de W, deducir del ejercicio anterior que $|f|_{B'U'}=C(U,U').|f|_{BU}.C(B',B)$

Ejercicio 32. Sea V un K-espacio vectorial y $B = \{v_1, v_2, v_3, v_4\}$ una base de V. Sea $f: V \to V$ la transformación lineal tal que

$$|f|_B = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

- i) Calcular $|f^{-1}|_B$
- ii) Calcular $f^{-1}(v_1 2.v_2 + v_4)$

Ejercicio 33. En cada uno de los siguientes casos, hallar una matriz $A \in \mathbb{R}^{n \times n}$ para un n adecuado que verifique:

- i) $A \neq I_n$ y $A^3 = I_n$
- ii) $A \neq 0$; $A \neq I_n$ y $A^2 = A$

Ejercicio 34. Sea V un K-espacio vectorial de dimensión finita y sea B una base de V.

- i) Sea $tr: \text{Hom}(V, V) \to K$ la aplicación definida por $tr(f) = tr(|f|_B)$. Probar que tr(f) no depende de la base B elegida.
- ii) Probar que $tr: \text{Hom}\,(V,V) \to K$ es una transformación lineal. tr(f) se llama la **traza** del endomorfismo f.

Ejercicio 35. Sean $B = \{v_1, v_2, v_3\}$, $U = \{v_1 + v_3, v_1 + 2.v_2 + v_3, v_2 + v_3\}$ y $U' = \{w_1, w_2, w_3\}$ bases de \mathbb{R}^3 , E la base canónica de \mathbb{R}^3 . Sea $f : \mathbb{R}^3 \to \mathbb{R}^3$ la transformación lineal tal que

$$|f|_{BE} = \begin{pmatrix} 1 & -1 & 3 \\ 2 & 1 & 1 \\ 3 & 2 & 1 \end{pmatrix} \qquad |f|_{UU'} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

Determinar U'.

Ejercicio 36.

- i) Sea $f: \mathbb{R}^4 \to \mathbb{R}^4$ la trasformación lineal definida por $f(x_1, x_2, x_3, x_4) = (0, x_1, x_1 + x_2, x_1 + x_2 + x_3)$ y sea v = (1, 0, 0, 0). Probar que $B = \{v, f(v), f^2(v), f^3(v)\}$ es una base de \mathbb{R}^4 . Calcular $|f|_B$.
- ii) Sea V un K-espacio vectorial de dimensión n y sea $f:V\to V$ una tranformación lineal tal que $f^n=0$ y $f^{n-1}\neq 0$. Probar que existe una base B de V tal que

$$(|f|_B)_{ij} = \begin{cases} 1 & \text{si } i = j+1 \\ 0 & \text{si no} \end{cases}$$

(Sugerencia: elegir $v_1 \notin Nu(f^{n-1})$).

Ejercicio 37. Sea V un K-espacio vectorial de dimensión n y sea $f:V\to V$ un proyector. Probar que existe una base B de V tal que

$$(|f|_B)_{ij} = \begin{cases} 1 & \text{si } i = j \ ; \ i \le \dim (Im(f)) \\ 0 & \text{si no} \end{cases}$$

(Sugerencia: ver Ejercicio 21.)

Ejercicio 38. Sea $f: \mathbb{R}^5 \to \mathbb{R}^4$ definida por

 $f(x_1, x_2, x_3, x_4, x_5) = (2.x_1 - x_5, x_2 + 2.x_3, x_1 + x_4 + x_5, -x_1 + x_4 + x_5)$. Encontrar bases B y B' de \mathbb{R}^5 y \mathbb{R}^4 respectivamente tales que $|f|_{BB'}$ sea una matriz diagonal.

Ejercicio 39. Sean V y W K-espacios vectoriales, dim V=n y dim W=m y $f:V\to W$ una transformación lineal tal que dim (Im(f))=s. Probar que existe una base B de V y una base B' de W tal que

$$(|f|_{BB'})_{ij} = \begin{cases} 1 & \text{si } i = j \ ; \ i \le s \\ 0 & \text{si no} \end{cases}$$

Ejercicio 40. Sea $f: \mathbb{R}^3 \to \mathbb{R}^3$ definida por $f(x_1, x_2, x_3) = (x_1 + x_2 - x_3, 2.x_1 - 3.x_2 + 2.x_3, 3.x_1 - 2.x_2 + x_3).$

i) Determinar bases $B \vee B'$ de \mathbb{R}^3 tales que

$$|f|_{BB'} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

ii) Si A es la matriz de f en la base canónica, encontrar matrices C, $D \in GL(3,\mathbb{R})$ tales que

$$C.A.D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Ejercicio 41. Calcular el rango de las siguientes matrices:

$$i)A = \begin{pmatrix} 2 & 0 & 3 & -1 \\ 1 & -2 & 1 & 0 \\ -1 & 1 & 0 & 1 \end{pmatrix} \qquad ii)A = \begin{pmatrix} 0 & 5 & 3 \\ 1 & -1 & 2 \\ 2 & 3 & 1 \end{pmatrix}$$

$$iii)A = \begin{pmatrix} 3 & -1 & 0 & 1 & 2 \\ -1 & 0 & 4 & -1 & 0 \\ 3 & 1 & 1 & 0 & 1 \\ 2 & 0 & 0 & 3 & 1 \end{pmatrix} \qquad iv)A = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

Ejercicio 42. Calcular el rango de $A \in \mathbb{R}^{3 \times 3}$ para cada $k \in \mathbb{R}$ siendo

$$A = \begin{pmatrix} 1 & -k & -1 \\ -1 & 1 & k^2 \\ 1 & k & k-2 \end{pmatrix}$$

8

Ejercicio 43.

- i) Sea $A \in K^{m \times n}$ y sea $S = \{x \in K^n / A.x = 0\}$. Probar que $\operatorname{rg}(A) + \dim(S) = n$ (Esto significa que la dimensión del espacio de soluciones es igual a la cantidad de incógnitas menos la cantidad de ecuaciones independientes)
- ii) Sea $A \in K^{m \times n}$, $b \in K^m$. Se considera el sistema A.x = b y sea $(A \mid b)$ su matriz ampliada. Probar que A.x = b tiene solución \iff $\operatorname{rg}(A) = \operatorname{rg}(A \mid b)$.

Ejercicio 44. Sea $A \in K^{m \times n}$, rg(A) = s y sea $T = \{x \in K^{n \times r}/A.x = 0\}$. Calcular la dimensión de T.

Ejercicio 45. Sea $A \in K^{m \times n}$ y $B \in K^{n \times r}$. Probar que $\operatorname{rg}(A.B) \leq \operatorname{rg}(A)$ y $\operatorname{rg}(A.B) \leq \operatorname{rg}(B)$

Ejercicio 46. Sean $A \in K^{m \times n}$, $C \in GL(m, K)$ y $D \in GL(n, K)$

- i) Probar que rg(C.A) = rg(A) = rg(A.D)
- ii) Deducir que rg(C.A.D) = rg(A)

Ejercicio 47. Sean A, $B \in K^{m \times n}$. Se dice que A es **equivalente** a B (y se nota $A \equiv B$) si existen $C \in GL(m,K)$ y $D \in GL(n,K)$ tales que A = C.B.D. Probar que Ξ es una relación de equivalencia en $K^{m \times n}$.

Ejercicio 48. Sean A, $D \in \mathbb{R}^{3\times 3}$,

$$A = \begin{pmatrix} 1 & 1 & -1 \\ 2 & -3 & 2 \\ 3 & -2 & 1 \end{pmatrix} \qquad y \qquad D = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ -1 & 0 & 1 \end{pmatrix}$$

i) Determinar C_1 , C_2 , C_3 y $C_4 \in GL(3,\mathbb{R})$ tales que

$$C_1.A.C_2 = C_3.D.C_4 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

(Sugerencia: ver Ejercicio 40.)

ii) Determinar $f \in \text{Hom}(\mathbb{R}^3, \mathbb{R}^3)$ y bases B, B', B_1 y B'_1 de \mathbb{R}^3 tales que

$$|f|_{BB'} = A$$
 y $|f|_{B_1B'_1} = D$

Ejercicio 49. Sean A, $C \in K^{m \times n}$. Probar que las siguientes afirmaciones son equivalentes:

- i) $A \equiv C$
- ii) $\exists f: K^n \to K^m$ tranformación lineal, bases B y B_1 de K^n y bases B' y B_1' de K^m tales que $|f|_{BB'} = A$ y $|f|_{B_1B_1'} = C$
- iii) $\operatorname{rg}(A) = \operatorname{rg}(C)$

Ejercicio 50. Dadas A, $B \in \mathbb{R}^{n \times n}$, decidir si existen matrices P, $Q \in GL(n, \mathbb{R})$ tales que A = P.B.Q.

9

i)
$$n = 2$$
; $A = \begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix}$; $B = \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix}$

ii)
$$n = 2$$
; $A = \begin{pmatrix} 2 & 3 \\ 4 & 6 \end{pmatrix}$; $B = \begin{pmatrix} 5 & 8 \\ 1 & 2 \end{pmatrix}$

iii)
$$n = 3$$
; $A = \begin{pmatrix} 1 & 0 & 5 \\ 2 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$; $B = \begin{pmatrix} 3 & 8 & 5 \\ 2 & 2 & 0 \\ 0 & 7 & 0 \end{pmatrix}$

iv)
$$n = 3$$
; $A = \begin{pmatrix} 1 & 1 & 0 \\ 2 & 1 & 0 \\ 3 & 0 & 1 \end{pmatrix}$; $B = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 0 & 1 \\ 1 & 1 & 3 \end{pmatrix}$

Ejercicio 51. Sean $A, B \in K^{n \times n}$. Se dice que A es **semejante** a B (y se nota $A \sim B$) si existe $C \in GL(n, K)$ tal que $A = C.B.C^{-1}$.

- i) Demostrar que \sim es una relación de equivalencia en $K^{n\times n}$.
- ii) Probar que dos matrices semejantes son equivalentes. ¿Vale la recíproca?

Ejercicio 52. Sean A, $C \in K^{n \times n}$. Probar que las siguientes afirmaciones son equivalentes:

- i) $A \sim C$
- ii) $\exists f: K^n \to K^n$ tranformación lineal y bases B y B' de K^n tales que $|f|_B = A y |f|_{B'} = C$ Ejercicio 53.
 - i) Sean A, $C \in K^{n \times n}$ tales que $A \sim C$. Probar que tr(A) = tr(C)
 - ii) Sean A, $C \in \mathbb{R}^{3\times3}$

$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 3 & -5 \\ 4 & 1 & 3 \end{pmatrix} \qquad y \qquad C = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$

¿Existen $f \in \text{Hom}(\mathbbm{R}^3, \mathbbm{R}^3)$ y bases B y B' de \mathbbm{R}^3 tales que $|f|_B = A$ y $|f|_{B'} = C$?

Ejercicios de parcial

- 1. Sea $f: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$ la transformación lineal definida por $f(A) = 4.A 2 \operatorname{tr}(A).I_n$.
 - (a) Si n = 2, probar que $Nu(f) \oplus Im(f) = \mathbb{R}^{2 \times 2}$.
 - (b) Si $n \geq 3$, probar que f es un isomorfismo.
- 2. Se consideran los siguientes subespacios de $\mathbb{R}^{2\times 2}$: $S=\{A\in\mathbb{R}^{2\times 2}/tr(A)=0\}$ y $T=\{B\in\mathbb{R}^{2\times 2}/B=B^t\}$ Hallar una transformación lineal $f:\mathbb{R}^{2\times 2}\to\mathbb{R}^{2\times 2}$ que satisfaga **simultáneamente** f(S)=T, f(T)=S y $f(v)\neq v$, $\forall\,v\in T-\{0\}$. (Justificar que la f hallada cumple todo lo pedido).
- 3. Dadas $B = \{X^2 + X, X, X^2 + X + 1\}$ y $B' = \{X^2, 1, X\}$ bases de $\mathbb{R}_2[X]$, se considera la transformación lineal $f : \mathbb{R}_2[X] \to \mathbb{R}_2[X]$ tal que

$$|f|_{B,B'} = \begin{pmatrix} 1 & 1 & 0 \\ 2 & a & 1 \\ a & 1 & 2a - 2 \end{pmatrix}$$

Encontrar todos los $a, b \in \mathbb{R}$ para los que f cumple **simultáneamente** dim $\operatorname{Nu}(f) = 1$ y $(b+1).X + b \in \operatorname{Im}(f)$.

- 4. Sea $A \in \mathbb{R}^{4 \times 2}$ y sea $B \in \mathbb{R}^{2 \times 4}$ tales que rg(A) = rg(B) = 2. Probar que rg(A.B) = 2.
- 5. Se consideran los siguientes subespacios de $\mathbb{R}_3[X]$:

$$S = \{ P \in \mathbb{R}_3[X]/P(1) = 0 \land P'(2) = 0 \}$$

$$T = \langle X^3 - 2X^2 + 2X - 2, 6X^2 - 12X + 4, 2X^3 + 2X^2 - 8X \rangle$$

- (a) Hallar una transformación lineal $f: \mathbb{R}_3[X] \to \mathbb{R}_3[X]$ que satisfaga **simultáneamente** $f(S+T) = S \cap T$, $\operatorname{Im}(f) = T$ y $f^2 = 0$.
- (b) Sea H un subespacio de dimensión 3 de $\mathbb{R}_3[X]$ tal que dim $(H \cap T) = 1$. Para **cualquier** transformación lineal f que cumpla las condiciones del ítem i) calcular f(H).