ÁLGEBRA LINEAL

Práctica N°5: Determinantes

Ejercicio 1. Calcular el determinante de las siguientes matrices:

i)
$$\begin{pmatrix} -3 & 2 \\ 4 & 5 \end{pmatrix}$$
 ii) $\begin{pmatrix} 2 & -2 \\ -1 & 1 \end{pmatrix}$ iii) $\begin{pmatrix} 1 & 2 & 5 \\ -3 & 0 & -1 \\ 1 & -4 & -2 \end{pmatrix}$ iv) $\begin{pmatrix} 2 & -1 & 3 \\ -1 & 1 & -2 \\ 4 & -1 & 5 \end{pmatrix}$ v) $\begin{pmatrix} 2 & 3 & -2 & 5 \\ 4 & -5 & 0 & 6 \\ 2 & 0 & -1 & 7 \\ 6 & 3 & -4 & 8 \end{pmatrix}$ vi) $\begin{pmatrix} 5 & 4 & -2 & 5 \\ 2 & -3 & 0 & 6 \\ 0 & 0 & 2 & 0 \\ -4 & 3 & 3 & 8 \end{pmatrix}$

Ejercicio 2. Calcular el determinante de las matrices elementales definidas en el ejercicio 16 de la práctica 2.

Ejercicio 3.

- i) Sea $A \in K^{n \times n}$ una matriz triangular superior. Probar que $\det(A) = \prod_{i=1}^{n} A_{ii}$
- ii) Calcular el determinante de $A \in K^{n \times n}$ siendo

$$A = \begin{pmatrix} 0 & 0 & \dots & 0 & a_1 \\ 0 & 0 & \dots & a_2 & 0 \\ \dots & \dots & \dots & \dots \\ 0 & a_{n-1} & \dots & 0 & 0 \\ a_n & 0 & \dots & 0 & 0 \end{pmatrix}$$

Ejercicio 4.

- i) Si $A \in K^{n \times n}$, $B \in K^{m \times m}$ y $C \in K^{n \times m}$, sea $M \in K^{(n+m) \times (n+m)}$ la matriz de bloques definida por $M = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$. Probar que $\det(M) = \det(A) \cdot \det(B)$.
- ii) Sean $r_1, r_2, ..., r_n \in \mathbb{N}$ y para cada $i, 1 \leq i \leq n$ sea $A_i \in K^{r_i \times r_i}$. Se considera la matriz de bloques

$$M = \begin{pmatrix} A_1 & 0 & 0 & \dots & 0 \\ 0 & A_2 & 0 & \dots & 0 \\ 0 & 0 & A_3 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & A_n \end{pmatrix}$$

Calcular $\det(M)$.

Ejercicio 5. Calcular los determinantes de las siguientes matrices:

$$i) \begin{pmatrix} 1 & 2 & 3 & \dots & n \\ -1 & 0 & 3 & \dots & n \\ -1 & -2 & 0 & \dots & n \\ \dots & \dots & \dots & \dots \\ -1 & -2 & -3 & \dots & 0 \end{pmatrix} \qquad ii) \begin{pmatrix} x & a & a & \dots & a \\ a & x & a & \dots & a \\ a & a & x & \dots & a \\ \dots & \dots & \dots & \dots \\ a & a & a & \dots & x \end{pmatrix}$$

$$iii) \begin{pmatrix} 0 & 1 & 1 & \dots & 1 & 1 \\ 1 & 0 & x & \dots & x & x \\ 1 & x & 0 & \dots & x & x \\ \dots & \dots & \dots & \dots & \dots \\ 1 & x & x & \dots & 0 & x \\ 1 & x & x & \dots & x & x \end{pmatrix}$$

Ejercicio 6.

i) Calcular inductivamente el determinante de $A \in \mathbb{R}^{n \times n}$:

$$A = \begin{pmatrix} 2 & 1 & 0 & 0 & \dots & \dots & 0 \\ 1 & 2 & 1 & 0 & \dots & \dots & 0 \\ 0 & 1 & 2 & 1 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & 1 & 2 & 1 & 0 \\ 0 & \dots & \dots & 0 & 1 & 2 & 1 \\ 0 & \dots & \dots & \dots & 0 & 1 & 2 \end{pmatrix}$$

ii) Calcular inductivamente el determinante de la matriz **compañera** $A \in K^{n \times n}$:

$$A = \begin{pmatrix} t & 0 & 0 & \dots & 0 & 0 & a_0 \\ -1 & t & 0 & \dots & 0 & 0 & a_1 \\ 0 & -1 & t & \dots & 0 & 0 & a_2 \\ 0 & 0 & -1 & \dots & 0 & 0 & a_3 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & -1 & t & a_{n-2} \\ 0 & 0 & 0 & \dots & 0 & -1 & t + a_{n-1} \end{pmatrix}$$

Ejercicio 7. Dada la matriz de Vandermonde:

$$V(k_1, k_2, \dots, k_n) = \begin{pmatrix} 1 & 1 & \dots & 1 \\ k_1 & k_2 & \dots & k_n \\ k_1^2 & k_2^2 & \dots & k_n^2 \\ \vdots & \vdots & \ddots & \vdots \\ k_1^{n-1} & k_2^{n-1} & \dots & k_n^{n-1} \end{pmatrix}$$

Probar que det
$$(V(k_1, k_2, ..., k_n)) = \prod_{1 \le i < j \le n} (k_j - k_i)$$

Sugerencia: Sin perder generalidad se supone que $k_i \neq k_j$ si $i \neq j$. Si se considera el determinante de $V(k_1, k_2, \ldots, k_{n-1}, X)$ como polinomio en X probar que k_1, \ldots, k_{n-1} son sus raíces y factorizarlo.

2

Observación: Si $\alpha_0, \alpha_1, \ldots, \alpha_n \in K$ son escalares distintos, $V(\alpha_0, \alpha_1, \ldots, \alpha_n)$ resulta inversible. Sea $A = (V(\alpha_0, \alpha_1, \ldots, \alpha_n))^t \in K^{(n+1)\times(n+1)}$ y sean $\beta_0, \beta_1, \ldots, \beta_n \in K$.

Entonces el sistema $A.x = (\beta_0, \beta_1, ..., \beta_n)$ tiene solución única $(x_0, x_1, ..., x_n) \in K^{n+1}$ y $P = \sum_{i=0}^{n} x_i.X^i$ es el polinomio interpolador de Lagrange tal que $P(\alpha_i) = \beta_i$ $(0 \le i \le n)$ (ver el ejercicio 16 de la práctica 4).

Ejercicio 8. Calcular los siguientes determinantes:

i)
$$\begin{pmatrix} 1+a & 1+b & 1+c & 1+d \\ 1+a^2 & 1+b^2 & 1+c^2 & 1+d^2 \\ 1+a^3 & 1+b^3 & 1+c^3 & 1+d^3 \\ 1+a^4 & 1+b^3 & 1+c^4 & 1+d^4 \end{pmatrix}$$
 ii)
$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ a^2 & b^2 & c^2 & d^2 \\ a^3 & b^3 & c^3 & d^3 \\ a^4 & b^4 & c^4 & d^4 \end{pmatrix}$$

Ejercicio 9. Sea $A = (a_{ij}) \in \mathbb{R}^{3\times 3}$ tal que A. $\begin{pmatrix} 1\\2\\1 \end{pmatrix} = \begin{pmatrix} 1\\2\\7 \end{pmatrix}$. Si $\det(A) = 3$, calcular el determinante de la matriz

$$\begin{pmatrix} a_{12} & a_{22} & a_{32} \\ 1 & 2 & 7 \\ a_{11} + 2a_{13} & a_{21} + 2a_{23} & a_{31} + 2a_{33} \end{pmatrix}$$

Ejercicio 10. Dadas las matrices $A, B \in \mathbb{R}^{2\times 2}$

$$A = \begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix}$$

Probar que no existe ninguna matriz $C \in GL(2,\mathbb{R})$ tal que A.C = C.B. ¿Y si no se pide que C sea inversible?

Ejercicio 11. Sea $A \in \mathbb{R}^{3\times 3}$ la matriz $A = \begin{pmatrix} 0 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 2 & 3 \end{pmatrix}$ y sea $B \in \mathbb{R}^{3\times 3}$, $B = (b_{ij})$ una matriz tal que det $(A + B) = \det (A - B)$. Probar que B es inversible si y sólo si $b_{11} \neq b_{21}$.

Ejercicio 12.

i) Sea $A \in \mathbb{R}^{4 \times 4}$ la matriz

$$A = \begin{pmatrix} a & b & c & d \\ b & -a & d & -c \\ c & -d & -a & b \\ d & c & -b & -a \end{pmatrix}$$

Probar que el sistema A.x=0 tiene solución única si y sólo si a, b, c y d no son todos iguales a cero.

ii) Analizar la validez de la afirmación anterior si $A \in \mathbb{C}^{4\times 4}$.

Ejercicio 13. Sea $A \in K^{n \times n}$ y sea $r \in K$. Probar que existe $x \in K^n$, $x \neq 0$ tal que A.x = r.x si y sólo si $\det(A - r.I_n) = 0$.

Ejercicio 14. Sean $\alpha_1, ..., \alpha_n \in \mathbb{R}$, todos distintos y no nulos. Probar que las funciones $e^{\alpha_1 x}, ..., e^{\alpha_n x}$ son linealmente independientes sobre \mathbb{R} . Deducir que $\mathbb{R}^{\mathbb{R}}$ no tiene dimensión finita

(Sugerencia: Derivar n-1 veces la función $\sum_{i=1}^{n} c_i e^{\alpha_i x}$).

Ejercicio 15. Calcular el determinante, la adjunta y la inversa de cada una de las siguientes matrices:

i)
$$\begin{pmatrix} 2 & 3 \\ 5 & 1 \end{pmatrix}$$
 ii) $\begin{pmatrix} 2 & -3 & 3 \\ -5 & 4 & 0 \\ 0 & -2 & 2 \end{pmatrix}$ iii) $\begin{pmatrix} -1 & 1 & 6 & 5 \\ 1 & 1 & 2 & 3 \\ -1 & 2 & 5 & 4 \\ 2 & 1 & 0 & 1 \end{pmatrix}$ iv) $\begin{pmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{pmatrix}$.

Ejercicio 16. Sea A una matriz inversible. Calcular det(adj A) ¿Qué pasa si A no es inversible?

Ejercicio 17.

i) Resolver los siguientes sistemas lineales sobre Q empleando la regla de Cramer:

a)
$$\begin{cases} 3.x_1 - x_2 = -3 \\ x_1 + 7.x_2 = 4 \end{cases}$$
 b)
$$\begin{cases} 3.x_1 - 2.x_2 + x_3 = 0 \\ -x_1 + x_2 + 2.x_3 = 1 \\ 2.x_1 + x_2 + 4.x_3 = 2 \end{cases}$$
 c)
$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ -x_1 + 2.x_2 - 4.x_3 + x_4 = 1 \\ x_1 - x_2 - x_3 - x_4 = 4 \\ 5.x_1 + x_2 - 3.x_3 + 2.x_4 = 0 \end{cases}$$

ii) Resolver el siguiente sistema lineal sobre \mathbb{Z}_7 empleando la regla de Cramer:

$$\begin{cases} 3x + y + 2z &= 1\\ x + z &= 6\\ 2x + 2y + z &= 3 \end{cases}$$

Ejercicio 18. Sea $A \in \mathbb{Z}^{n \times n}$ tal que $\det(A) = 1$ ó $\det(A) = -1$. Probar que para todo $b = (b_1, ..., b_n) \in \mathbb{Z}^n$, existe un único $x = (x_1, ..., x_n) \in \mathbb{Z}^n$ tal que A.x = b.

Ejercicio 19. Sea $A \in \mathbb{R}^{3\times 3}$ la matriz $A = \begin{pmatrix} a & b & c \\ d & e & f \\ q & h & i \end{pmatrix}$. Se sabe que

$$\det\begin{pmatrix} 1 & b & c \\ 2 & e & f \\ 5 & h & i \end{pmatrix} = 0 \qquad \det\begin{pmatrix} a & 2 & c \\ d & 4 & f \\ a & 10 & i \end{pmatrix} = 0 \qquad \begin{pmatrix} a & b & -1 \\ d & e & -2 \\ a & h & -5 \end{pmatrix} = 0$$

Calcular $\det A$.

Ejercicio 20. Sea $A \in K^{m \times n}$

- i) Probar que son equivalentes: a) rg $(A) \geq s$ b) A admite una submatriz de $s \times s$ con determinante no nulo
- ii) Deducir que rg $(A) = \max \{ s \in \mathbb{N}_0 / A \text{ admite una submatriz de } s \times s \text{ con determinante no nulo} \}$

4

Ejercicio 21.

- i) Sea $A \in K^{3\times 3}$ no inversible tal que $A_{11}.A_{33}-A_{13}.A_{31}\neq 0$. Calcular la dimensión de $S=\{x\in K^3/A.x=0\}$
- ii) Sea $A \in K^{n \times n}$ no inversible tal que adj $(A) \neq 0$. Calcular rg(A) y rg(adj A).

Ejercicio 22.

- i) Calcular el área del paralelogramo generado por los vectores (2,1) y (-4,5)
- ii) Mismo problema para (3,4) y (-2,-3)
- iii) Calcular el área de un paralelogramo tal que 3 de sus vértices están dados por los puntos (1,1), (2,-1) y (4,6)
- iv) Calcular el volumen del paralelepípedo generado por (1,1,3), (1,2,-1) y (1,4,1)
- v) Mismo problema para (-2,2,1), (0,1,0) y (-4,3,2).

Ejercicio 23.

- i) Sea $A = (a_{ij}) \in K^{6 \times 6}$. ¿Con qué signos aparecen los siguientes productos en $\det(A)$?: a) $a_{23}.a_{31}.a_{42}.a_{56}.a_{14}.a_{65}$ b) $a_{32}.a_{43}.a_{14}.a_{51}.a_{66}.a_{25}$
- ii) Sea $A = (a_{ij}) \in K^{5 \times 5}$. Elegir todos los posibles valores de j y de k tales que el producto $a_{1j}.a_{32}.a_{4k}.a_{25}.a_{53}$ aparezca en $\det(A)$ con signo +
- iii) Sea $A = (a_{ij}) \in K^{4 \times 4}$. Escribir todos los términos de $\det(A)$ que tengan al factor a_{23} y signo +
- iv) Sin calcular el determinante, calcular los coeficientes de X^4 y de X^3 en

$$\det \begin{pmatrix} 2.X & X & 1 & 2\\ 1 & X & 1 & -1\\ 3 & 2 & X & 1\\ 1 & 1 & 1 & X \end{pmatrix}$$

v) Sin calcular el determinante, calcular el coeficiente de a^6 y el de b^6 en

$$\det \begin{pmatrix} 1 & b & a & 1 & 1 & a \\ 1 & 1 & b & 1 & a & 1 \\ 1 & 1 & 1 & a & b & 1 \\ a & 1 & 1 & 1 & 1 & b \\ 1 & 1 & a & b & 1 & a \\ b & a & 1 & 1 & 1 & 1 \end{pmatrix}$$

(*) Ejercicio 24. Sean $A, B, C, D \in K^{n \times n}$. Sea $M \in K^{2n \times 2n}$ la matriz de bloques

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

Probar que si $A \in GL(n, K)$, $\det(M) = \det(A.D - A.C.A^{-1}.B)$. Si además A.C = C.A entonces $\det(M) = \det(A.D - B.C)$.

5