Análisis I - Práctica 4

- 1. Hallar los valores de x para los cuales convergen las series:
 - (a) $\sum_{n=1}^{\infty} \frac{x^n}{2^n}$
 - (b) $\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{n^2}$
 - (c) $\sum_{n=1}^{\infty} \frac{x^n}{n+\sqrt{n}}$
 - (d) $\sum_{n=1}^{\infty} 2^n \sin(\frac{x}{3^n})$
 - (e) $\sum_{n=1}^{\infty} 3^{n^2} x^{n^2}$
 - (f) $\sum_{n=1}^{\infty} n!(x+1)^n$
- 2. Escribir los primeros cuatro términos del desarrollo en serie de potencias de x de las funciones:
 - (a) tan(x)
 - (b) $e^{\cos(x)}$
 - (c) $ln(1 + e^x)$
 - (d) $(1+x)^x$
- 3. Calcular la serie de Maclaurin de las siguientes funciones: $e^x,\,e^{x^2},\,e^{-x^2},\,a^x$ y $\sin x$.
- 4. Aprovechando las fórmulas del desarrollo en serie de potencias de las funciones e^x , $\sin(x)$, $\cos(x)$, $\ln(1+x)$, $(1+x)^{\alpha}$ desarrollar en series de potencias las siguientes funciones y determinar los radios de convergencia:
 - (a) $\frac{1}{1-x}$
 - (b) $\sqrt{1+x}$
 - (c) $\frac{1}{10+x}$
 - $\left(\mathbf{d}\right) \ \frac{1}{1+x^2}$
 - (e) $\cos^2(x)$
 - (f) $(1+x)e^{-x}$
 - $(g) \frac{1}{4-x^4}$
 - $(h) \frac{e^x 1}{x}$
 - $(i) \ \frac{1}{(1+x)^2}$
 - $(j) \arctan(x)$
 - $\left(\mathbf{k}\right) \ \frac{x}{\left(1+x^2\right)^2}$

- 5. Hallar la suma de la serie $\sum_{n=1}^{\infty} nx^n$ para |x| < 1. Rta: $\frac{x}{(1-x)^2}$.
- 6. (a) Calcular el desarrollo en serie de $f(x) = \ln\left(\frac{1+x}{1-x}\right)$, indicando el radio de convergencia.
 - (b) Comprobar que con el desarrollo anterior, se puede escribir $\ln(a)$ como una serie convergente de número racionales, cualquiera sea $a \in \mathbb{N}$. Escriba una fórmula para $\ln(5)$.

7. Calcular:

- (a) $\cos(10^{\circ})$ con error menor que 10^{-4} .
- (b) $\sin(18^{\circ})$ con error menor que 10^{-3} .
- (c) $\arctan(1/5)$ con error menor que 10^{-4} .
- (d) ln(5) con error menor que 10^{-3} .
- (e) \sqrt{e} con error menor que 10^{-4} .
- (f) $\int_0^1 e^{-x^2} dx$ con error menor que 10^{-4} .
- 8. En cada caso desarrollar en serie de potencias las funciones f y $F(x) = \int_0^x f(t) dt$ y aproximar,
 - (a) $\int_0^1 f(x) dx$ con error menor que 10^{-4} , $f(x) = e^{-x^2}$,
 - (b) $\int_0^{\frac{1}{2}} f(x) dx$ con error menor que 10^{-3} , $f(x) = \frac{\arctan x}{x}$,
 - (c) $\int_0^1 f(x) dx$ con error menor que 10^{-4} , $f(x) = \cos(\sqrt{x})$.
- 9. Desarrollando en serie de potencias de x integrar las siguientes ecuaciones diferenciales y definir el dominio de aplicación de la solución obtenida.
 - (a) y' + xy = 0, y(0) = 0
 - (b) y'' + xy' + y = 0, y(0) = 0, y'(0) = 1
 - (c) y'' + y = 0, y(0) = 1, y'(0) = 0

¿De qué función es éste el desarrollo en serie de potencias de x?

- 10. Encuentre los primeros cuatro términos distintos de cero del desarrollo en serie de potencias de x de las siguientes ecuaciones
 - (a) $y'' = x + y^2$, y(0) = 0, y'(0) = 1
 - (b) $y' = x^2y + y^3$, y(0) = 1
 - (c) $y'' = xy^2$, y(0) = 1, y'(0) = 1
- 11. Para todos los valores reales de p > 0, estudiar la convergencia o divergencia de las integrales:

(a)
$$\int_1^{+\infty} x^p dx$$

(b)
$$\int_0^1 x^p dx$$

(c)
$$\int_0^{+\infty} x^p dx$$

Sugerencia: dividir los valores de p de la siguiente manera: 0 y <math>p > 1.

12. Analizar la convergencia de las siguientes integrales:

(a)
$$\int_0^2 \frac{dx}{\sqrt{x}}$$

(b)
$$\int_2^{+\infty} \frac{dx}{x \cdot \ln^2(x)}$$

(c)
$$\int_0^{+\infty} e^{-kx} dx$$

(d)
$$\int_{-\infty}^{+\infty} \frac{x^2}{1+x^6} dx$$

(e)
$$\int_0^{+\infty} \frac{dx}{1+x^3} dx$$

(f)
$$\int_{-1}^{3} \frac{dx}{(1-x)^3} dx$$

(g)
$$\int_{-\infty}^{+\infty} \sin(2x) dx$$

(h)
$$\int_0^4 \frac{x}{x^2 - 4} dx$$

(i)
$$\int_0^1 (\ln x)^2 dx$$

(j)
$$\int_0^{+\infty} x \cdot e^{-x} dx$$

(k)
$$\int_{-1}^{1} \frac{dx}{\sqrt{|x|}} dx$$

13. Decidir si son verdaderas o falsas las siguientes afirmaciones:

- (a) Si f(x) es una función continua y positiva tal que $\lim_{x\to +\infty} f(x)=a>0$, entonces $\int_0^{+\infty} f(x)dx=+\infty$.
- (b) Si f(x) es una función continua y positiva tal que $\lim_{x\to +\infty} f(x)=a>0$, entonces $\int_0^{-\infty} f(x)dx=-\infty$.
- (c) Si f(x) es una función continua y decreciente con $\int_4^{+\infty} f(x) dx = 3$, entonces $\lim_{x \to +\infty} f(x) = 0$.
- (d) Si f(x) es una función continua y positiva con $\int_4^{+\infty} f(x) dx = 8$, entonces $\lim_{x \to +\infty} f(x) = 0$.
- (e) Si f(x) es una función continua y positiva tal que $\lim_{x\to+\infty} f(x) = 0$, entonces $\int_0^{+\infty} f(x) dx < +\infty$.