Análisis I - Práctica 6

1. Calcule las derivadas parciales de las siguientes funciones:

(a)
$$f(x,y) = x^4 + 2xy + y^3x - 1$$

(b)
$$f(x, y, z) = ye^x + z$$

(c)
$$f(x,y) = x^2 \sin^2(y)$$

(d)
$$f(x,y) = \sin x$$

(e)
$$f(x, y, z) = z(\cos(xy) + \ln(x^2 + y^2 + 1))$$

(f)
$$f(x,y) = xe^{x^2+y^2}$$

(g)
$$f(x,y) = \int_{x}^{y} e^{\sin t} dt$$

(h)
$$f(x,y) = \int_{x}^{x^2+y^2} e^t dt$$

(i)
$$f(x,y) = \arctan \frac{y}{x}$$

2. Calcule

(a)
$$\frac{\partial f}{\partial y}(2,1)$$
 para $f(x,y) = \sqrt{xy + \frac{x}{y}}$

(b)
$$\frac{\partial f}{\partial z}(1,1,1)$$
 para $f(x,y,z) = \sqrt{x^2 + z^2} + \ln(y)$

(c)
$$\frac{\partial f}{\partial x}(0,0), \frac{\partial f}{\partial y}(0,0), \frac{\partial f}{\partial x}(1,1) \text{ y } \frac{\partial f}{\partial y}(1,1), \text{ para } f(x,y) = \begin{cases} \frac{x^3}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

3. Dadas las funciones

$$f_1(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

$$f_2(x,y) = |x| + |y|$$

$$f_3(x,y) = \begin{cases} (x^2 + y^2) \sin\left(\frac{1}{\sqrt{x^2 + y^2}}\right) & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

Demuestre que en el origen

- (a) f_1 es discontinua aunque existen las derivadas parciales.
- (b) f_2 no admite derivadas parciales pero es continua.
- (c) f_3 es diferenciable pero sus derivadas parciales son discontinuas.
- 4. Estudie la continuidad, existencia de derivadas parciales y diferenciabilidad de las siguientes funciones en el origen:

(a)
$$f(x, y, z) = \sqrt{|xyz|}$$

(b)
$$f(x,y) = \begin{cases} x \sin\left(4 \arctan\left(\frac{y}{x}\right)\right) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$$

(c)
$$f(x,y) = \begin{cases} \frac{x^3 - y^3}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

(d)
$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} \sin\left(\frac{1}{\sqrt{x^2 + y^2}}\right) & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

(e)
$$f(x,y) = \begin{cases} \frac{x}{y} \sin\left(\frac{1}{y}\right) & \text{si } y \neq 0 \\ 0 & \text{si } y = 0 \end{cases}$$

5. Sea

$$f(x,y) = \begin{cases} \frac{x^3}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

Muestre que f no es diferenciable en (0,0). Sin embargo, para cualquier curva diferenciable $\Phi: \mathbb{R} \to \mathbb{R}^2$ que pase por el origen una sola vez, se cumple que $f(\Phi(t))$ es derivable para todo t.

- 6. Encuentre la ecuación del plano que pasa por (2,1,0),(3,2,-1),(2,-1,1).
- 7. (a) Encuentre dos vectores no paralelos ortogonales a (-1, 1, 2).
 - (b) Escriba la ecuación del plano que pasa por el punto (0,1,2) y es ortogonal al vector (1,1,1).
- 8. (a) Escriba la ecuación del plano que pasa por el punto (a, b, c) y es ortogonal al vector (v_1, v_2, v_3) .
 - (b) Encuentre la ecuación de la recta normal al plano de ecuación 6x 2y + 4z = 0 que pasa por el punto (3, 1, 1).
- 9. (a) Encuentre un vector unitario perpendicular a los dos vectores (1, 1, 1) y (3, 1, 0).
 - (b) Encuentre un vector normal al plano que pasa por los puntos (1,0,1), (3,4,0) y (1,-1,3).
- 10. Sea $f: \mathbb{R}^2 \to \mathbb{R}^3$ definida por

$$f(x_1, x_2) = (x_1 + x_2, x_1 - x_2, 2x_1 + 3x_2).$$

- (a) Verifique que f es una transformación lineal y encuentre la matriz asociada.
- (b) Calcule la matriz diferencial Df(x).
- (c) ¿Qué relación hay entre estas dos matrices?

11. Sean $F: \mathbb{R}^2 \to \mathbb{R}^3$ y $G: \mathbb{R}^3 \to \mathbb{R}^4$ las transformaciones lineales dadas por

$$F(x_1, x_2) = (2x_1, x_1 + x_2, 7x_1 - x_2)$$

$$G(x_1, x_2, x_3) = (x_1 - x_3, x_1 - 4x_2, 2x_1 - x_2 + x_3, 5x_2)$$

- (a) Calcule las matrices asociadas a F y a G.
- (b) Calcule $G \circ F : \mathbb{R}^2 \to \mathbb{R}^4$ y su matriz asociada, ¿qué relación hay entre ésta y las halladas en a)? Justifique la respuesta.
- 12. Dada la transformación lineal $T: \mathbb{R}^2 \to \mathbb{R}$ definida por T(x,y) = 2x 3y
 - (a) Calcule la ecuación del plano Graf(T).
 - (b) Encuentre un sistema de generadores de dicho plano.
- 13. (a) Encuentre una transformación lineal $f: \mathbb{R}^2 \to \mathbb{R}$ cuyo gráfico sea el plano

$$\pi = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\}$$

- (b) De la matriz en la base canónica asociada a la f hallada en a).
- 14. Si se corta la esfera $x^2 + y^2 + z^2 = 1$ con el plano de ecuación y = 0 se obtiene una circunferencia. De la parametrización de la recta tangente a dicha circunferencia en el punto (1,0,0) y en el punto $\left(\frac{\sqrt{2}}{2},0,\frac{\sqrt{2}}{2}\right)$.
- 15. Estudie la diferenciabilidad de las siguientes funciones en los puntos indicados y escriba la ecuación del plano tangente cuando éste exista.

(a)
$$f(x,y) = xy + 1 - \sin\left(\frac{x^2}{2}\right)$$
 en $(1,5)$ y en $(2,2)$.

- (b) $f(x,y) = x^{1/4}y^{1/4}$ en (0,0) y en (16,1).
- (c) $f(x,y) = \frac{x}{y}$ en (x_0, y_0) con $y_0 \neq 0$.

(d)
$$f(x,y) = \begin{cases} (x^2 + y^2) \sin\left(\frac{1}{x^2 + y^2}\right) & \text{si } (x,y) \neq (0,0) \\ 1 & \text{si } (x,y) = (0,0) \end{cases}$$
 en $(0,0)$ y en $(1,0)$.

(e)
$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$
 en $(0,0)$ y en $(-1,1)$.

- 16. Calcule DF(x) para las siguientes funciones:
 - (a) $F: \mathbb{R}^2 \to \mathbb{R}^2$, F(x, y) = (x, y)
 - (b) $F: \mathbb{R}^2 \to \mathbb{R}^3$, $F(x, y) = (xe^y + \cos y, x, x + e^y)$
 - (c) $F: \mathbb{R}^3 \to \mathbb{R}^2$, $F(x, y, z) = (x + e^z + y, yx^2)$

(d)
$$F: \mathbb{R}^n \to \mathbb{R}, F(x) = ||x||^2$$

17. Calcule el gradiente de f para

(a)
$$f(x, y, z) = \sqrt{x^2 + y^2} + z^2$$

(b)
$$f(x, y, z) = xy + xz + yz$$

(c)
$$f(x, y, z) = \frac{1}{x^2 + y^2 + z^2}$$

- 18. Calcule los ángulos formados por el gradiente de la función $f(x,y) = x^{\sqrt{3}} + y$ en el punto (1,1) y los ejes de coordenadas.
- 19. Grafique las siguientes curvas en el plano o el espacio según corresponda.
 - (a) $\sigma(t) = (1, 1, t)$.
 - (b) $\sigma(t) = (1, 1, t^2).$
 - (c) $\sigma(t) = (\cos(t), \sin(t), t)$.
 - (d) $\sigma(t) = (t \sin(t), 1 \cos(t)).$
 - (e) $\sigma(t) = (\cos(2t), \sin(2t)).$
- 20. Determinar los vectores velocidad y aceleración y la ecuación de las rectas tangentes a las siguientes curvas en t_0 .
 - (a) $\sigma(t) = (6t, 3t^2, t^3), t_0 = 0.$
 - (b) $\sigma(t) = (\cos^2(t), 3t t^3, t), t_0 = 0.$
 - (c) $\sigma(t) = (\sin(3t), \cos(3t), 2t), t_0 = 1.$
- 21. Encuentre curvas σ que representen los siguientes conjuntos o trayectorias.
 - (a) $\{(x,y): y=e^x\}.$
 - (b) $\{(x,y): 4x^2 + y^2 = 1\}.$
 - (c) $\{(x, y, z) : x^2 + y^2 + (z 1)^2 = 1, z = x^2 + y^2, z \neq 0\}.$
- 22. Sean $f(u, v, w) = u^2 + v^3 + wu$ y $g(x, y) = x \sin y$. Dadas

$$u(t) = t^2 + 1, v(t) = \sin t, w(t) = t - 1 \text{ y } x(t) = \sin t, y(t) = t$$

caclule

$$\frac{d}{dt}f(u(t), v(t), w(t)) \text{ y } \frac{d}{dt}g(x(t), y(t))$$

- (a) usando la regla de la cadena
- (b) sustituyendo

23. Sean
$$f(u, v) = e^{uv} \sin(u^2 + v^2)$$
, $g(u, v, w) = \ln(u^2 + v^2 + w^2 + 1)$. Dadas
$$u(x, y) = x + y$$
, $v(x, y) = xy$, $w(x, y) = x - y + 1$

calcule las derivadas parciales de las funciones

$$f(u(x,y),v(x,y)) \ y \ g(u(x,y),v(x,y),w(x,y))$$

- (a) usando la regla de la cadena
- (b) sustituyendo
- 24. Calcule las derivadas parciales de las siguientes funciones:
 - (a) $f(x,y) = \int_0^{2y} x^2 z + z^3 dz$
 - (b) $f(x,y) = \int_{\sqrt{x}}^{x} \sin(xyz)dz$
 - (c) $f(x, y, z) = \int_{5}^{x+2y} \sin(x^2 + yz + t)dt$
- 25. a) ¿Para qué valores de $p \in \mathbb{R}_{>0}$ es

$$f(x,y) = \begin{cases} (x^2 + y^2)^p \sin\left(\frac{1}{x^2 + y^2}\right) & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

diferenciable en \mathbb{R}^2 ?; Para qué valores de p es f de clase C^1 ?

- b) La función f se puede escribir como $g(x^2+y^2)$ con $g(t)=t^p\mathrm{sen}\,\frac{1}{t}$ si t>0 y g(0)=0. ¿Qué conclusiones se obtienen si se estudia la diferencibilidad de g?
- 26. Sean $f, g, h : \mathbb{R} \to \mathbb{R}$ derivables y $G : \mathbb{R}^2 \to \mathbb{R}$ diferenciable. Calcule las derivadas parciales de las siguientes funciones:
 - (a) F(x,y) = G(f(x)g(y), f(x)h(y))
 - (b) $F(x,y) = G(x^y, y^x)$ (x, y > 0)
 - (c) F(x,y) = G(x, G(x,y))
 - (d) $F(x,y) = f(x)^{g(y)}$ (si f(x) > 0 para todo $x \in \mathbb{R}$)
 - (e) $F(x,y) = G\left(\int_x^{f(y)} h(t)dt, g(y)\right)$
- 27. Usando la expresión

$$z = f(x_0, y_0) + \nabla f(x_0, y_0)(x - x_0, y - y_0)$$

para una función f adecuada, aproxime $(0, 99e^{0.2})^8$.

28. Calcule la derivada direccional de f en x_0 en la dirección v siendo:

(a)
$$f(x,y) = \sin x \cos y$$
 $x_0 = (1,1)$ $v = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$

(b)
$$f(x,y) = x^4 + \ln(xy)$$
 $x_0 = (e,1)$ $v = \left(\frac{1}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right)$

(c)
$$f(x, y, z) = e^z(xy + z^2)$$
 $x_0 = (0, 1, 0)$ $v = \left(0, \frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right)$

(d)
$$f(x,y,z) = y + yz + zxy$$
 $x_0 = (1,1,1)$ $v = \left(\frac{\sqrt{3}}{3}, -\frac{\sqrt{3}}{3}, -\frac{\sqrt{3}}{3}\right)$

(e)
$$f(x, y, z) = x^2 + y^2 + z^2$$
 $x_0 = (1, 1, 1)$ $v = \left(\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}\right)$

- (f) $f(x,y,z) = x^{yz}$ $x_0 = (e,e,0)$ $v = \left(\frac{12}{13}, \frac{3}{13}, \frac{3}{13}\right)$ Si f es diferenciable en x_0 verificar que la derivada calculada coincide con $\nabla f(x_0) \cdot v$.
- 29. Dada la superficie $S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$. Muestre que el vector $v = \left(0, \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ es normal a la superficie S en el punto $\left(0, \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ e interprete este hecho geométricamente.
- 30. Sea $f(x,y) = x^{1/3}y^{1/3}$
 - (a) Usando la definición de derivada direccional, muestre que

$$\frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(0,0) = 0$$

y que $\pm e_1, \pm e_2$ son las únicas direcciones para las cuales existe la derivada direccional en el origen.

- (b) Muestre que f es continua en (0,0).
- (c) ¿Es f diferenciable en (0,0)?
- 31. Sean $f, g : \mathbb{R}^n \to \mathbb{R}$ diferenciables en $x_0 \in \mathbb{R}^n$. Demuestre que la función definida por h(x) = f(x)g(x) es diferenciable en x_0 y

$$\nabla h(x_0) = f(x_0)\nabla g(x_0) + g(x_0)\nabla f(x_0)$$

¿Qué relación existe entre las derivadas direccionales de h en x_0 en la dirección v(||v||=1) y las derivadas direccionales de f y g en x_0 en la misma dirección?

32. Muestre que la derivada direccional de f en el punto (x_0, y_0) en la dirección -v (recordar que ||v|| = 1) es igual a la derivada direccional de f en (x_0, y_0) en la dirección de v pero con el signo opuesto, o sea

$$\frac{\partial f}{\partial (-v)}(x_0, y_0) = -\frac{\partial f}{\partial v}(x_0, y_0)$$

- 33. (a) Pruebe que si $f: \mathbb{R}^n \to \mathbb{R}$ es diferenciable y tal que para algún v con ||v|| = 1 se cumple que $Df(x) \cdot v = 0$, para todo $x \in \mathbb{R}^n$, entonces en cada recta que lleve la dirección de v, f será constante.
 - (b) Construya ejemplos de lo demostrado anteriormente para n=2 y v=(1,0),(0,1) y $(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}})$.
- 34. Calcule las derivadas direccionales de f en el origen en cualquier dirección v, ||v|| = 1, siendo

$$f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

- 35. Calcule ecuación del plano tangente y de la recta normal, cuando existan, a las superficies dadas en los puntos indicados
 - (a) $x^{10}y \cos(z)x + 7 = 0$ $x_0 = (7, 0, 0)$
 - (b) $xy z \ln(y) + e^{xy} = 1$ $x_0 = (0, 1, 1)$
 - (c) $xy\sin(y) + ze^{xy} z^2 = 0$ $x_0 = (4, 0, 1)$
 - (d) $\cos(x)\cos(y)e^z = 0$ $x_0 = (\pi/2, 1, 0)$
- 36. Dada una función $f: \mathbb{R}^2 \to \mathbb{R}$ diferenciable en (x_0, y_0) y $h: \mathbb{R}^3 \to \mathbb{R}$ definida por h(x, y, z) = f(x, y) z, vea qué relación existe entre el plano tangente al gráfico de f en (x_0, y_0) y el plano tangente a una superficie de nivel de h en $(x_0, y_0, f(x_0, y_0))$.
- 37. Encuentre los planos tangentes a la superficie

$$S = \{(x, y, z) \in R^3 : x^2 + 2y^2 + 3z^2 = 21\}$$

que sean paralelos al plano $\Pi: x + 4y + 6z = 8$.

- 38. Encuentre la dirección en que la función $z=x^2+xy$ crece más rápidamente en el punto (1,1).; Cuál es la magnitud $||\nabla z||$ en esta dirección? Interprete geométricamente esta magnitud.
- 39. Si $h(x,y) = 2e^{-x^2} + e^{-3y^2}$ denota la altura de una montaña en la posición (x,y).¿En qué dirección desde (1,0) debería uno comenzar a caminar para escalar más rápido?
- 40. (a) Muestre que si $\nabla f(x_0) \neq 0$ entonces $-\nabla f(x_0)$ apunta en la dirección a lo largo de la cual f decrece más rápidamente.
 - (b) Una distribución de temperaturas en el plano está dada por la función $f(x,y) = 10+6\cos(x)\cos(y)+4\cos(3y)$. En el punto $(\pi/3,\pi/3)$ encuentre las direcciones de más rápido crecimiento y más rápido decrecimiento.

41. El capitán Ralph se encontró en el lado soleado de Mercurio y notó que su traje espacial se fundía. La temperatura en su sistema rectangular de coordenada en su vecindad viene dada por

$$T(x, y, z) = e^{-x} + e^{-zy} + e^{-3z}$$

Si él está ubicado en (1,1,1). ¿En qué dirección deberá comenzar a moverse con el fin de enfriarse lo más rápido posible?

- 42. Sea $F: \mathbb{R}^2 \to \mathbb{R}^2$ dada por $F(x,y) = (e^x \cos y, e^x \sin y)$. Pruebe que $|DF(x,y)| \neq 0$ $\forall (x,y) \in \mathbb{R}^2$ pero que F no es inyectiva.
- 43. Determine si las siguientes aplicaciones son localmente inversibles de clase C^1 en el punto dado
 - (a) $F(x,y) = (x^2 y^2, 2xy)$ en $(x,y) \neq (0,0)$
 - (b) $F(x,y) = (\sin x, \cos(xy))$ en $(\pi, \pi/2)$
- 44. Sea $F: \mathbb{R}^2 \to \mathbb{R}^2$ dada por $F(x,y) = (x^3y + 3x^2y^2 7x 4y, xy + y)$.
 - (a) Demostrar que existe un entorno $U\subset\mathbb{R}^2$ tal que $(1,1)\in U$, un entorno $V\subset\mathbb{R}^2$ tal que $(-7,2)\in V$ y una inversa para F, $F^{-1}:V\to U$, \mathcal{C}^1 tal que $F^{-1}(-7,2)=(1,1)$.
 - (b) Sean $g: \mathbb{R}^2 \to \mathbb{R}$ una función \mathcal{C}^1 tal que $\frac{\partial g}{\partial x}(1,1) = 2$, $\frac{\partial g}{\partial y}(1,1) = 5$ y $v = (\frac{3}{5}, \frac{4}{5})$. Calcular $\frac{\partial (g \circ F^{-1})}{\partial v}(-7,2)$.
- 45. Sea $f(x,y,z)=x^3-2y^2+z^2$. Demuestre que f(x,y,z)=0 define una función implícita $x=\varphi(y,z)$ en el punto (1,1,1). Encuentre $\frac{\partial \varphi}{\partial y}(1,1)$ y $\frac{\partial \varphi}{\partial z}(1,1)$.
- 46. Encuentre la solución y = f(x, z) de $x^2 + y^2 z^3 = 0$ en un entorno de los siguientes puntos del plano xz y escribir explícitamente esos entornos
 - (a) (5, 10)
 - (b) (0,64)
- 47. Determine las derivadas parciales de las funciones que quedan definidas implícitamente en un entorno del punto dado mediante las relaciones
 - (a) $f(x,y) = \frac{1}{4}x^2 y^2 = 1$ P = (2,0)
 - (b) $g(x,y) = x^5 + y^y + xy = 3$ P = (1,1)
 - (c) $h(x, y, z) = x^3 + 2y^3 + z^3 3xyz 2y 8 = 0$ P = (0, 0, 2)
- 48. El paraboloide $3x^2+2y^2-2z=1$ y la superficie esférica $x^2+y^2+z^2-4y-2z+2=0$ se cortan en el punto $(1,\,1,\,2)$.

- (a) Hallar el plano tangente en dicho punto, probar que ambos planos se cortan ortgonalmente y encontrar la recta de intersección de los dos planos tangentes.
- (b) Usando el teorema de la función implícita, probar que en dicho punto, las dos superficies se cortan ortogonalmente y que la recta tangente a la curva de intersección de las dos superficies en dicho punto es la intersección de los dos planos tangentes.
- 49. Probar que existe una curva que es intersección de las superficies $z=4x^2-3y^2$ y $x^2+y^2+z^2=24$ en el punto P=(2,-2,4). Hallar la recta tangente de dicha curva en el punto P.