Ejercicios Adicionales

(Prácticas 1 y 2)

Ejercicio 1. Sea $A \subset \mathbb{R}$ un conjunto acotado superiormente, no vacío y que no admite máximo. Demostrar que existe una sucesión estrictamente creciente $(a_n)_{n\in\mathbb{N}}$ contenida en A tal que $\lim_{n\to\infty} a_n = \sup(A)$.

Ejercicio 2. Sea $A \subset \mathbb{R}$ un conjunto no vacío y acotado. Probar que

$$\sup(A) - \inf(A) = \sup\{x - y : x \in A, y \in A\}.$$

Ejercicio 3. Sea $(A_n)_{n\in\mathbb{N}}$ una familia de subconjuntos no vacíos de \mathbb{R} tales que $\bigcup_{n\in\mathbb{N}} A_n$ está acotado superiormente. Para cada $n\in\mathbb{N}$, sea $s_n=\sup(A_n)$. Probar que $\{s_n:n\in\mathbb{N}\}$ está acotado superiormente y que sup $\Big(\bigcup_{n\in\mathbb{N}} A_n\Big)=\sup\{s_n:n\in\mathbb{N}\}$.

Ejercicio 4. Sea $A \subset \mathbb{R}$ un conjunto no vacío. Estudiar la validez de las afirmaciones siguientes (dando una demostración si la afirmación es verdadera o un contraejemplo debidamente justificado en caso contrario).

- i) Si A es acotado superiormente, entonces el supremo de A es el mayor punto de acumulación de A.
- ii) Si A es acotado superiormente, entonces sup $A = \sup \overline{A}$.
- iii) Si A es acotado superiormente, entonces sup $A = \sup A^{\circ}$.
- iv) Si A es acotado, entonces A tiene máximo y mínimo si y sólo si A es cerrado (en este caso estudiar las dos implicaciones).

Ejercicio 5. Sea $A \subset \mathbb{R}$ un conjunto no vacío y acotado superiormente.

- i) Demostrar que ∂A es no vacío y acotado superiormente.
- ii) Demostrar que sup $A = \sup \partial A$.

Ejercicio 6. Sea $S \subset \mathbb{R}^2$ el conjunto siguiente:

$$S = \left\{ \left(\frac{n}{2n+1}, \frac{m}{m+2} \right) \text{ con } n, m \in \mathbb{N} \right\}.$$

Hallar $\underline{\text{todos}}$ los puntos de acumulación de S. Justificar.

Ejercicio 7. Para cada $n \in \mathbb{N}$ sea L_n la recta en \mathbb{R}^2 de ecuación y = nx y sea $S = \bigcup_{n \in \mathbb{N}} L_n$. Hallar el conjunto $\overline{S} - S$. Justificar.

Ejercicio 8. Decidir si cada una de las afirmaciones siguientes es verdadera o falsa, dando una demostración (en el caso verdadero) o un contraejemplo (si la afirmación es falsa):

- i) Si $A, B \subset \mathbb{R}^n$ son conjuntos tales que $A \subsetneq B$ (es decir, A está estrictamente contenido en B), entonces $\overline{A} \subsetneq \overline{B}$.
- ii) Si $A \subset \mathbb{R}^n$ y $B \subset \mathbb{R}^n$ entonces $(A B)^{\circ} = A^{\circ} B^{\circ}$.
- iii) Si $A \subset \mathbb{R}^n$ y $B \subset \mathbb{R}^n$ entonces $\partial(A \cap B) = \partial(A) \cap \partial(B)$.
- iv) Si $A \subset \mathbb{R}^n$ entonces $\partial(\overline{A}) \subseteq \partial(A)$.

Ejercicio 9. Sea $U \subseteq \mathbb{R}$ un conjunto abierto no vacío. Demostrar que para cada punto $x \in U$ existe un intervalo abierto I (no necesariamente acotado) tal que se cumplen las siguientes condiciones:

- $x \in I$
- $I \subseteq U$
- Si H es un intervalo abierto contenido en U y tal que $x \in H$, entonces $H \subseteq I$.

Ejercicio 10. Sea $U \subseteq \mathbb{R}^n$ un abierto y $G \subseteq \mathbb{R}^s$ otro abierto. Demostrar que

$$U \times G = \{(p,q) \in \mathbb{R}^{n+s} / p \in U, q \in G\}$$

es un abierto de \mathbb{R}^{n+s} .

Ejercicio 11. Sea $A \subset \mathbb{R}^n$ un conjunto abierto y sea $B \subset \mathbb{R}^n$ un conjunto cualquiera. Demostrar que

$$A + B = \{a + b : a \in A, b \in B\}$$

es un conjunto abierto. ¿Vale lo mismo reemplazando abierto por cerrado?

Ejercicio 12. Sea $S \subset \mathbb{R}^n$ un conjunto tal que $\overline{S} = \mathbb{R}^n$. Sea $B(p_0, r)$ la bola abierta con centro $p_0 \in \mathbb{R}^n$ y radio $r \in \mathbb{R}_{>0}$. Demostrar que $S + B(p_0, r) = \mathbb{R}^n$.

Ejercicio 13. Sea $U \subset \mathbb{R}^n$ un abierto y sea $F = \overline{U}$. Sea $S \subset \mathbb{R}^n$ un conjunto tal que $\overline{S} = F$. Probar que $\overline{S \cap U} = F$.

Ejercicio 14. Sea $(F_m)_{m\in\mathbb{N}}$ una familia de subconjuntos cerrados de \mathbb{R}^n tal que para todo $x\in\mathbb{R}^n$ existe una bola abierta con centro en x que interseca sólo un número finito de conjuntos F_m . Probar que $\bigcup_{m\in\mathbb{N}} F_m$ es un conjunto cerrado.

Ejercicio 15. Sea $S \subset \mathbb{R}^n$. Demostrar que S es acotado si y sólo si \overline{S} es compacto.

Ejercicio 16. Sea $S \subset \mathbb{R}^n$. Demostrar que S es compacto y sin puntos de acumulación si y sólo si S es un conjunto finito.

Ejercicio 17. Sea $A \subset \mathbb{R}^n$ y $r \in \mathbb{R}$ un número real positivo. Se define el conjunto $K(A, r) \subset \mathbb{R}^n$ como

$$K(A,r) = \bigcup_{x \in A} \overline{B(x,r)}$$

donde $\overline{B(x,r)}$ denota la bola cerrada con centro en x y radio r.

- i) Demostrar que si A es compacto entonces K(A, r) también es compacto.
- ii) Encontrar un conjunto no vacío $A \subset \mathbb{R}$ y un número real positivo r tales que K(A,r) no sea cerrado.

Ejercicio 18. Sea $S \subseteq \mathbb{R}^n$.

- i) Demostrar que si S es conexo entonces \overline{S} también es conexo.
- ii) ¿Es cierto que si \overline{S} es conexo entonces necesariamente S también es conexo?

Ejercicio 19. Sean $F, H \subset \mathbb{R}^n$ conjuntos cerrados.

- i) Probar que si $F \cap H = \emptyset$ entonces existen abiertos U_1 y U_2 de \mathbb{R}^n tales que $F \subset U_1$, $H \subset U_2$ y $U_1 \cap U_2 = \emptyset$.
- ii) ¿Es cierto que si $F \cup H$ es conexo entonces necesariamente $F \cap H \neq \emptyset$?
- iii) ¿Es cierto que si $F \cap H \neq \emptyset$ entonces necesariamente $F \cup H$ es conexo?

En los ítems ii) y iii), dar una demostración si es verdadero o un contraejemplo si es falso.

Ejercicio 20. Sea $S \subset \mathbb{R}^n$, sea $\varepsilon > 0$ y sea $S_{\varepsilon} = \{x \in \mathbb{R}^n : d(x, S) < \varepsilon\}$.

- i) Demostrar que $\bigcap_{\varepsilon>0} S_{\varepsilon} = \overline{S}$
- ii) Demostrar que todo cerrado de \mathbb{R}^n es intersección de una familia numerable de abiertos.