Ejercicios Adicionales

(Práctica 4)

Ejercicio 1. Decidir si la integral $\int_{0}^{3} x^{2} d(\lceil x \rceil - x^{3})$ existe y en caso afirmativo calcularla, siendo $\lceil x \rceil := \min \{ n \in \mathbb{Z} \ / \ n \geq x \}$. Justificar.

Ejercicio 2. Sea $f(x) = \begin{cases} 0 & \text{si } x \notin \mathbb{Q} \\ 1 & \text{si } x \in \mathbb{Q} \end{cases}$. Hallar todos los integradores $\alpha : [0,1] \to \mathbb{R}$ tales que $\int_{0}^{1} f d\alpha$ exista. Justificar.

Ejercicio 3. Se sabe que f es una función continua y que la integral $\int_a^b f \ d\alpha$ existe. Sea $c \in (a,b)$ y sea $\beta : [a,b] \to \mathbb{R}$ tal que $\beta(x) = \alpha(x)$ si $x \neq c$. Demostrar que $\int_a^b f \ d\beta$ existe y que vale $\int_a^b f \ d\beta = \int_a^b f \ d\alpha$.

Ejercicio 4. Se tienen las funciones siguientes definidas en el intervalo [0,2]:

$$f(x) = |x - 1|$$

$$\alpha(x) = \begin{cases} 5 & \text{si } x = 0 \\ e^x & \text{si } x \in (0, 2] \end{cases}$$

Demostrar que $f \in \mathfrak{R}(\alpha)$ y hallar el valor de $\int_{0}^{2} f d\alpha$.

Ejercicio 5. Sean $f, \alpha : [a, b] \to \mathbb{R}$ tales que f es continua y α es monótona creciente. A partir de f y α se define una nueva función $G : \mathbb{R} \to \mathbb{R}$ de la manera siguiente: $G(t) = \int_a^b (f - t) d\alpha$.

- i) Demostrar que G está bien definida y que existe $t_0 \in \mathbb{R}$ tal que $G(t_0) = 0$.
- ii) Demostrar que existe algún $c \in [a, b]$ tal que $\int_a^b f \, d\alpha = f(c) (\alpha(b) \alpha(a))$.
- iii) Suponiendo que α es además derivable en (a,b) (pero no necesariamente de clase \mathcal{C}^1), demostrar que la función

$$\psi(x) := \int_{a}^{x} f \, d\alpha$$

es derivable en (a,b) y que vale $\psi'(x) = f(x)\alpha'(x)$ para todo $x \in (a,b)$.

Ejercicio 6. Sean $f, \alpha : [0, +\infty) \to \mathbb{R}$ funciones que cumplen las condiciones:

- f es continua y $\lim_{x \to +\infty} f(x)$ existe y es finito.
- α es Lipschitz.

Se pide entonces:

- i) Demostrar que para cada $x \in \mathbb{R}_{>0}$ existe la integral de Riemann-Stieltjes $\int_{0}^{x} f \, d\alpha$.
- ii) Demostrar que f es una función acotada.
- iii) Si se define una nueva función $\psi:[0,+\infty)\to\mathbb{R}$ de la manera siguiente: $\psi(x)=\int\limits_0^x f\,d\alpha$, demostrar que ψ es Lipschitz.

Ejercicio 7. Sea $f:[0,1]\to\mathbb{R}$ definida como $f(x)=\left\{\begin{array}{cc} x^2 & \text{si } x\in\mathbb{Q}\\ 0 & \text{si } x\notin\mathbb{Q} \end{array}\right.$. Estudiar si f es una función de variación acotada. Justificar.

Ejercicio 8. Sea $f:[a,b] \to \mathbb{R}$. Para cada partición $\pi = \{x_0,....,x_n\}$ del intervalo [a,b] se define $\pi(f) = \sum_{k=1}^{n} |f(x_k) - f(x_{k-1})|$. Demostrar que f es de variación acotada si y sólo si existe $\varepsilon > 0$ y una constante $M \in \mathbb{R}$, tal que $\pi(f) \leq M$ para toda partición de norma menor que ε .

Ejercicio 9. Analizar la validez de las afirmaciones siguientes (haciendo una demostración si la implicación es verdadera o exhibiendo un contraejemplo si la implicación es falsa; en caso de un "⇔" analizar las dos implicaciones):

- i) $f:[a,b]\to\mathbb{R}$ es de variación acotada \Rightarrow existen funciones monótonas crecientes y **estrictamente positivas** u y v tales que f=u-v.
- ii) $f:[a,b]\to\mathbb{R}$ es de variación acotada \Leftrightarrow existen funciones monótonas crecientes u y v tales que f=u+v.
- iii) $f:[a,b]\to\mathbb{R}$ es de variación acotada \Rightarrow existen funciones monótonas crecientes u y v tales que $f=u^2-v^2$.

Nota: u^2 y v^2 denotan respectivamente las funciones u(x).u(x) y v(x).v(x).

Ejercicio 10. Sea $f:[0,2] \to \mathbb{R}$ la función:

$$f(x) = \begin{cases} 0 & x = 0 \\ 1 & 0 < x \le 1 \\ x - 1 & 1 < x \le 2 \end{cases}.$$

 2

Demostrar que f es de variación acotada y hallar la función v_f .

Ejercicio 11. Sea $f:[a,b]\to\mathbb{R}$ una función de variación acotada y sea $g:\mathbb{R}\to\mathbb{R}$ de clase \mathcal{C}^1 (es decir, g es derivable y g' es continua). Demostrar que $g\circ f:[a,b]\to\mathbb{R}$ es una función de variación acotada.

Ejercicio 12. Sea $f: \mathbb{R} \to \mathbb{R}$ la función

$$f(x) = \begin{cases} x & \text{si } \exists n \in \mathbb{N} \text{ tal que } x = \frac{1}{n} \\ 0 & \text{si no} \end{cases}.$$

Demostrar que para todo $a \in (0,1)$ la función f sobre el intervalo [a,1] es una función de variación acotada, pero f no es una función de variación acotada sobre el intervalo [0,1].