Práctica 3

Ejercicio 1. Sea $f: \mathbb{R}^n \to \mathbb{R}^m$ y sean $A, B \subseteq \mathbb{R}^n$ y $X, Y \subseteq \mathbb{R}^m$. Decidir en cada caso si corresponde $\subset, \supset \acute{o} = y$ probarlo.

i)
$$f(A \cup B)$$
 $f(A) \cup f(B)$

ii)
$$f^{-1}(X \cup Y)$$
 $f^{-1}(X) \cup f^{-1}(Y)$

iii)
$$f(A \cap B)$$
 $f(A) \cap f(B)$

iv)
$$f^{-1}(X \cap Y)$$
 $f^{-1}(X) \cap f^{-1}(Y)$

v)
$$f(\mathbb{R}^n - A)$$
 $\mathbb{R}^m - f(A)$

vi)
$$f^{-1}(\mathbb{R}^m - X)$$
 $\mathbb{R}^n - f^{-1}(X)$

En cada caso, dar hipótesis sobre f para que valga la igualdad.

Ejercicio 2. Hallar todos los puntos donde la función f es continua, siendo

i) $f:[0,1] \rightarrow [0,1]$ la función:

$$f(x) = \begin{cases} x & \text{si } x \in \mathbb{Q} \\ 1 - x & \text{si } x \notin \mathbb{Q} \end{cases}$$

ii) $f: \mathbb{R} \to \mathbb{R}$ la función:

$$f(x) = \begin{cases} \frac{1}{b} & \text{si } x = \frac{a}{b} \text{ con } a, b \in \mathbb{Z} \text{ coprimos y } b > 0 \\ 0 & \text{si } x \notin \mathbb{Q} \end{cases}$$

Ejercicio 3. Sea $S \subseteq \mathbb{R}^n$ y sea $f: S \to \mathbb{R}^m$. Probar que f es continua si y sólo si para todo cerrado $F \subseteq \mathbb{R}^m$ existe un cerrado $W_F \subseteq \mathbb{R}^n$ tal que $f^{-1}(F) = W_F \cap S$.

Ejercicio 4. En cada uno de los siguientes casos, decidir si el conjunto dado es abierto o cerrado (o ninguna de las dos cosas) y probarlo:

i)
$$\{(x,y) \in \mathbb{R}^2 / y^2(e^x - 1) + yx = 1\}.$$

ii)
$$\{(x, y, z) \in \mathbb{R}^3 / 1 < xy + z < 2\}.$$

iii)
$$\{(x,y) \in \mathbb{R}^2 / \sin^2(x) - xy^2 \ge -2\}.$$

Ejercicio 5. Sea $f: \mathbb{R}^n \to \mathbb{R}^m$ una función continua tal que f(x) = f(y) para todo $x, y \in \mathbb{Q}^n$. Demostrar que f es una función constante. Deducir que dos funciones continuas que coinciden sobre \mathbb{Q}^n son la misma función.

Ejercicio 6. Sea $f:[a,b] \to [a,b]$ una función continua. Demostrar que existe $c \in [a,b]$ tal que f(c) = c.

Sugerencia: Considerar la función x - f(x).

Ejercicio 7. Sea $f: \mathbb{R}^n \to \mathbb{R}^m$ una función continua. Probar que el gráfico de f es un conjunto cerrado de \mathbb{R}^{n+m} . ¿Vale la recíproca?

Ejercicio 8. Sea $K \subset \mathbb{R}^n$ un conjunto compacto y sea $f: K \to \mathbb{R}^m$ una función tal que la imagen de f es un conjunto acotado y el gráfico de f es un conjunto cerrado. Demostrar que f es continua.

Ejercicio 9. Sea $K \subset \mathbb{R}^n$ un conjunto compacto y sea $f: K \to \mathbb{R}$ una función continua tal que f(x) > 0 para todo $x \in K$. Probar que existe $\alpha > 0$ tal que $f(x) > \alpha$ para todo $x \in K$.

Ejercicio 10. Estudiar la continuidad uniforme de las funciones siguientes:

- i) $f: \mathbb{R}^3 \to \mathbb{R}$, f(x) = ||x||.
- ii) $f: \mathbb{R}^3 \to \mathbb{R}$, $f(x) = ||x||^2$.
- iii) $f:(r,+\infty)\to\mathbb{R}^2$, $f(x)=(\sqrt{x},\cos x)$, con r=0 y con r>0.
- iv) $f: \mathbb{R}^2 \to \mathbb{R}, f(x, y) = x^2 + 3y$.
- v) $f:(0,1) \to \mathbb{R}, f(x) = \sin(\frac{1}{x}).$
- vi) $f: \mathbb{R}^n \to \mathbb{R}$, f(x) = d(x, S), donde $S \subseteq \mathbb{R}^n$.

Ejercicio 11. Sea $S \subseteq \mathbb{R}^n$ un conjunto arbitrario y sean $f, g: S \to \mathbb{R}^m$ funciones uniformemente continuas.

- i) Probar que f + g es uniformemente continua.
- ii) Mostrar con un ejemplo que $f\cdot g$ no necesariamente es uniformemente continua, aún si alguna de las funciones f ó g es acotada.
- iii) Probar que si $h:f(S)\to\mathbb{R}^k$ es uniformemente continua entonces $h\circ f:S\to\mathbb{R}^k$ también lo es.

Ejercicio 12. Sea $f : \mathbb{R} \to \mathbb{R}$ una función que es uniformemente continua en los intervalos (a, b] y [b, c). Probar que f es uniformemente continua en (a, c).

¿Es cierto que si f es una función uniformemente continua sobre un conjunto $S \subseteq \mathbb{R}^n$ y también sobre un conjunto $T \subseteq \mathbb{R}^n$, entonces lo es en $S \cup T$?

Ejercicio 13. Sea $f : \mathbb{R} \to \mathbb{R}$ una función y sean x_0 y α números reales. Se dice que f es localmente Lipschitz de orden α en el punto x_0 si existen $\varepsilon, M \in \mathbb{R}_{>0}$ tales que

$$|f(x) - f(x_0)| < M|x - x_0|^{\alpha}$$
 para todo x tal que $0 < |x - x_0| < \varepsilon$.

- i) Demostrar que si f es localmente Lipschitz de orden $\alpha > 0$ en x_0 entonces f es continua en x_0 .
- ii) Demostrar que si f es localmente Lipschitz de orden $\alpha > 1$ en x_0 entonces f es derivable en x_0 .

Ejercicio 14. Demostrar que las siguientes funciones son uniformemente continuas:

i)
$$f: \mathbb{R} \to \mathbb{R}, f(x) = \frac{1}{1+x^2}.$$

ii) $f: \mathbb{R} \to \mathbb{R}^2$, $f(x) = (\cos x, \sin x)$.

Ejercicio 15. Sea $f: [-1,1] \to \mathbb{R}$ la función $f(x) = \sqrt[3]{x}$. Demostrar que f no es Lipschitz, pero sin embargo f es uniformemente continua ("uniformemente continua # Lipschitz").

Ejercicio 16. Sea $S \subset \mathbb{R}^n$ y sea $f: S \to \mathbb{R}^n$ una función Lipschitz, es decir, existe $M \in \mathbb{R}_{>0}$ tal que

$$\parallel f(x) - f(x') \parallel \leq M \parallel x - x' \parallel \qquad \forall x, x' \in S.$$

- i) Demostrar que si S es cerrado, M < 1 y $f(S) \subseteq S$, entonces existe $y \in S$ tal que f(y) = y. (En otras palabras, f tiene un punto fijo).
 - Sugerencia: Considerar la sucesión $(x_n)_{n\in\mathbb{N}}$ en S definida recursivamente como: $x_1\in S$ arbitrario y $x_{n+1}:=f(x_n)\ \forall\ n\in\mathbb{N}$. Demostrar que $(x_n)_{n\in\mathbb{N}}$ es una sucesión de Cauchy y tomar $y=\lim_{n\to\infty}x_n$.
- ii) Mostrar con un ejemplo que el resultado es falso si no se supone S cerrado.
- iii) Sea $f: \mathbb{R} \to \mathbb{R}$ la función $f(x) = \frac{x + \sqrt{x^2 + 1}}{2}$. Demostrar que f es Lipschitz con M = 1 y que f no tiene puntos fijos.

Ejercicio 17. Sea $K \subset \mathbb{R}^n$ un compacto y sea $f: K \to K$ una función que satisface:

$$\parallel f(x) - f(x') \parallel < \parallel x - x' \parallel \text{ para todo } x, x' \in K$$

(en particular, f es Lipschitz con M=1). Demostrar que f tiene un punto fijo. (Comparar con los ejercicios 6 y 18).

Sugerencia: Considerar la función $g: K \to \mathbb{R}$ definida como g(x) = ||x - f(x)||.

Ejercicio 18.

- i) En cada uno de los casos siguientes, hallar el límite puntual de la sucesión $(f_n)_{n\in\mathbb{N}}$ definida en el conjunto $S \subset \mathbb{R}$ dado:

 - (a) $f_n(x) = x^n$ S = (-1, 1](b) $f_n(x) = \frac{e^x}{x^n}$ $S = (1, +\infty)$
 - (c) $f_n(x) = n^2 x (1 x^2)^n$ S = [0, 1]
- ii) (a) Observar que la sucesión dada en i)(a) es una sucesión de funciones continuas que converge puntualmente a una función que no es continua. Probar que la convergencia es uniforme sobre $T=(0,\frac{1}{2})$.
 - (b) Probar que la sucesión dada en i)(b) converge uniformemente sobre T = [2, 5].

Ejercicio 19. Sea $S \subset \mathbb{R}^N$ un conjunto, sea $(f_n)_{n \in \mathbb{N}}$ una sucesión de funciones, $f_n : S \to \mathbb{R}^M$, y sea $f: S \to \mathbb{R}^M$. Probar que si existen $\alpha > 0$, una subsucesión $(f_{n_k})_{k \in \mathbb{N}}$ de $(f_n)_{n \in \mathbb{N}}$ y una sucesión $(a_k)_{k\in\mathbb{N}}\subset S$ tales que $d(f_{n_k}(a_k),f(a_k))\geq \alpha$ para todo $k\in\mathbb{N}$ entonces $(f_n)_{n\in\mathbb{N}}$ no converge uniformemente a f en S.

Ejercicio 20. Analizar la convergencia puntual y uniforme de las siguientes sucesiones de funciones $(f_n)_{n\in\mathbb{N}}$ en los conjuntos indicados:

- i) $f_n(x) = \frac{\sin nx}{n}$ en \mathbb{R}
- ii) $f_n(x) = \operatorname{sen}(\frac{x}{n})$ en \mathbb{R}
- iii) $f_n(x,y) = \frac{n}{n+1}(x,y)$ en \mathbb{R}^2
- iv) $f_n(x) = (1 + \frac{1}{n})x$ en [0, 1]

v)
$$f_n(x) = \begin{cases} \frac{1}{n} & \text{si } x \notin \mathbb{Q} \text{ ó } x = 0\\ b + \frac{1}{n} & \text{si } x = \frac{a}{b}, b > 0 \text{ y } (a:b) = 1 \end{cases}$$
 en $[0, 1]$

Ejercicio 21. Probar que la sucesión de funciones $f_n(x) = \frac{x}{1+x^2} - \frac{x(x^2+1)}{1+(n+1)^2x^2}$ $(n \in \mathbb{N})$ converge puntualmente en \mathbb{R} a una función continua, pero la convergencia no es uniforme.

Ejercicio 22. Sea $S \subset \mathbb{R}^N$ y sea $(f_n)_{n \in \mathbb{N}}$ una sucesión de funciones $f_n : S \to \mathbb{R}$ que converge uniformemente a una función $f: S \to \mathbb{R}$. Probar que si f_n es acotada para cada $n \in \mathbb{N}$, entonces:

- i) f es acotada
- ii) Existe $M \in \mathbb{R}$ tal que $|f_n(x)| \leq M \quad \forall x \in S, \forall n \in \mathbb{N}$ (en otras palabras, $(f_n)_{n \in \mathbb{N}}$ es uniformemente acotada).

Ejercicio 23. Sea $S \subset \mathbb{R}^N$ y sean $(f_n)_{n \in \mathbb{N}}$ y $(g_n)_{n \in \mathbb{N}}$ sucesiones de funciones de S en \mathbb{R} tales que $f_n \to f$ uniformemente en S y $g_n \to g$ uniformemente en S.

- i) Probar que $f_n + g_n \to f + g$ uniformemente en S.
- ii) Probar que si f_n y g_n están acotadas para cada $n \in \mathbb{N}$, entonces $f_n \cdot g_n \to f \cdot g$.
- iii) Mostrar que en general no es cierto que $f_n \cdot g_n \to f \cdot g$ uniformemente en S. Sugerencia: Considerar las sucesiones de funciones del ejercicio 22. iv) y v).

Ejercicio 24. Sea $(f_n)_{n\in\mathbb{N}}$ la sucesión de funciones $f_n:[0,1]\to\mathbb{R}$ definidas por $f_n(x)=n^2x(1-x)^n$.

- i) Probar $(f_n)_{n\in\mathbb{N}}$ converge puntualmente a la función $f\equiv 0$ en [0,1].
- ii) Verificar que existe $\lim_{n\to\infty} \int_0^1 f_n(x) \ dx$ y que $\lim_{n\to\infty} \int_0^1 f_n(x) \ dx \neq \int_0^1 \left(\lim_{n\to\infty} f_n(x)\right) \ dx$.