Práctica 3

- **1.** Sea $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ y sean $A, B \subset \mathbb{R}^n$ y $X, Y \subset \mathbb{R}^m$. Decidir, en cada caso, si corresponde poner " \subset ", " \supset " o "=" y probarlo
 - a) $f(A \cup B)$... $f(A) \cup f(B)$
 - b) $f^{-1}(X \cup Y)$... $f^{-1}(X) \cup f^{-1}(Y)$
 - c) $f(A \cap B)$... $f(A) \cap f(B)$
 - d) $f^{-1}(X \cap Y)$... $f^{-1}(X) \cap f^{-1}(Y)$
 - e) $f(\mathbb{R}^n A)$... $\mathbb{R}^m f(A)$
 - f) $f^{-1}(\mathbb{R}^m X)$... $\mathbb{R}^n f^{-1}(X)$

En cada caso, dar hipótesis sobre f para que valga la igualdad.

- 2. Hallar todos los puntos donde la función f es continua, siendo
 - a) $f:[0,1] \longrightarrow [0,1]$ la función

$$f(x) = \begin{cases} x & \text{si } x \in \mathbb{Q} \\ 1 - x & \text{si } x \notin \mathbb{Q} \end{cases}$$

b) $f: \mathbb{R} \longrightarrow \mathbb{R}$ la función

$$f(x) = \begin{cases} \frac{1}{b} & \text{si } x = \frac{a}{b}, \text{ con } a, b \in \mathbb{Z} \text{ coprimos y } b > 0 \\ 0 & \text{si } x \notin \mathbb{Q} \end{cases}$$

- **3.** En cada uno de los siguientes casos, decidir si el conjunto dado es abierto o cerrado (o ninguna de las dos cosas) y probarlo:
 - a) $\{(x,y) \in \mathbb{R}^2 / y^2(e^x 1) + yx = 1\}$
 - b) $\{(x, y, z) \in \mathbb{R}^3 / 1 < xy + z < 2\}$
 - c) $\{(x, y) \in \mathbb{R}^2 / \operatorname{sen}^2 x xy^2 \ge -2\}$
- **4.** Sea $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ una función continua tal que f(x) = f(y) para todo $x, y \in \mathbb{Q}^n$. Demostrar que fes una función constante. Deducir que dos funciones continuas que coinciden sobre \mathbb{Q}^n son la misma función.
- **5.** Sea $f:[a,b] \longrightarrow [a,b]$ una función continua. Demostrar que existe $c \in [a,b]$ tal que f(c) = c.

Sugerencia: considerar la función x - f(x).

- **6.** Sea $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ una función continua. Probar que el gráfico de f es un conjunto cerrado de \mathbb{R}^{n+m} . ¿Vale la recíproca?
- 7. Sea $K \subset \mathbb{R}^n$ un conjunto compacto y sea $f: K \longrightarrow \mathbb{R}$ una función continua tal que f(x) > 0 para todo $x \in K$. Probar que existe $\alpha > 0$ tal que $f(x) > \alpha$ para todo $x \in K$.
- 8. Demostrar que las siguientes funciones son uniformemente continuas

a)
$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
, $f(x) = \frac{1}{1+x^2}$

b)
$$f: \mathbb{R} \longrightarrow \mathbb{R}^2$$
, $f(x) = (\cos x, \sin x)$

- 9. Estudiar la continuidad uniforme de las funciones siguientes
 - a) $f: \mathbb{R}^3 \longrightarrow \mathbb{R}$, f(x) = ||x||
 - b) $f: \mathbb{R}^3 \longrightarrow \mathbb{R}$, $f(x) = ||x||^2$
 - c) $f:(r,+\infty) \longrightarrow \mathbb{R}^2$, $f(x) = (\sqrt{x},\cos x)$, $\cos r = 0$ y $\cos r > 0$
 - d) $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$, $f(x, y) = x^2 + 3y$
 - e) $f:(0,1) \longrightarrow \mathbb{R}$, $f(x) = \operatorname{sen}(\frac{1}{x})$
 - f) $f: \mathbb{R}^n \longrightarrow \mathbb{R}$, f(x) = d(x, S), siendo $S \subset \mathbb{R}^n$
- **10.** Sea $S \subset \mathbb{R}^n$ un conjunto arbitrario y sean $f, g: S \longrightarrow \mathbb{R}^m$ funciones uniformemente continuas. Probar que
 - a) f + g es uniformemente continua
 - b) si $h: f(S) \longrightarrow \mathbb{R}^k$ es uniformemente continua, entonces $h \circ f: S \longrightarrow \mathbb{R}^k$ también lo es.
- 11. Encontrar una función
 - a) definida en (0, 1) continua y acotada pero no uniformemente continua
 - b) continua y acotada en \mathbb{R} pero no uniformemente continua.
- **12.** Sea $f : \mathbb{R} \longrightarrow \mathbb{R}$ una función que es uniformemente continua en los intervalos (a, b] y [b, c). Probar que f es uniformemente continua en (a, c).

¿Es cierto que si f es una función uniformemente continua sobre un conjunto $S \subset \mathbb{R}^n$ y también sobre un conjunto $T \subset \mathbb{R}^n$, entonces lo es en $S \cup T$?

13. Sea $f : \mathbb{R} \longrightarrow \mathbb{R}$ una función y sean x_0 y α números reales. Se dice que f es *localmente Lipschitz de orden* α *en el punto* x_0 si existen ε , $M \in \mathbb{R}_{>0}$ tales que

$$|f(x) - f(x_0)| < M|x - x_0|^{\alpha}$$
 para todo x tal que $0 < |x - x_0| < \varepsilon$

- a) Demostrar que si f es localmente Lipschitz de orden $\alpha > 0$ en x_0 , entonces f es continua en x_0
- b) Demostrar que si f es localmente Lipschitz de orden $\alpha > 1$ en x_0 , entonces f es derivable en x_0 .

14. Sea $S \subset \mathbb{R}^n$ y sea $f: S \longrightarrow \mathbb{R}^n$, decimos que f es *Lipschitz* si existe M > 0 tal que

$$||f(x) - f(x')|| \le M||x - x'||$$
 para todo $x, x' \in S$

a) Demostrar que si S es cerrado, M < 1 y $f(S) \subset S$, entonces existe $y \in S$ tal que f(y) = y; es decir, f tiene un punto fijo.

Sugerencia: considerar la sucesión $(x_n) \subset S$ definida recursivamente como

$$x_1$$
 arbitrario

$$x_{n+1} = f(x_n) \quad (n \in \mathbb{N})$$

Demostrar que (x_n) es una sucesión de Cauchy.

- b) Mostrar con un ejemplo que el resultado es falso si no se supone S cerrado
- c) Sea $f : \mathbb{R} \longrightarrow \mathbb{R}$ la función

$$f(x) = \frac{x + \sqrt{x^2 + 1}}{2}$$

Demostrar que f es Lipschitz (con M = 1) y que f no tiene puntos fijos.

- **15.** Sea $f: [-1,1] \longrightarrow \mathbb{R}$ la función $f(x) = \sqrt[3]{x}$. Demostrar que f no es Lipschitz, pero sin embargo f es uniformemente continua.
- **16.** Sea $K \subset \mathbb{R}^n$ un compacto y sea $f: K \longrightarrow K$ una función que satisface

$$||f(x) - f(x')|| < ||x - x'||$$

para todo $x, x' \in K$; en particular f es Lipschitz con M = 1.

Demostrar que f tiene un punto fijo.

Sugerencia: considerar la función $g: K \longrightarrow \mathbb{R}$ definida por g(x) = ||x - f(x)||.

- 17. a) En cada uno de los casos siguientes, hallar el límite puntual de la sucesión (f_n) definida en el conjunto $S \subset \mathbb{R}$ dado

 - (i) $f_n(x) = x^n$ S = (-1, 1](ii) $f_n(x) = \frac{e^x}{x^n}$ $S = (1, +\infty)$
 - (iii) $f_n(x) = n^2 x (1 x^2)^n$ S = [0, 1]
 - b) (i) Observar que la sucesión dada en a)(i) es una sucesión de funciones continuas que converge puntualmente a una función que no es continua. Comprobar que la convergencia es uniforme en $T = (0, \frac{1}{2})$
 - (ii) Probar que la sucesión dada en a)(ii) converge uniformemente sobre T = [2, 5].

18. Analizar la convergencia puntual y uniforme de las siguientes sucesiones de funciones (f_n) en los conjuntos indicados

a)
$$f_n(x) = \frac{\operatorname{sen}(nx)}{n}$$
 en \mathbb{R}

b)
$$f_n(x) = \operatorname{sen}(\frac{x}{n})$$
 en \mathbb{R}

c)
$$f_n(x, y) = \frac{n}{n+1}(x, y)$$
 en \mathbb{R}^2

d)
$$f_n(x) = (1 + \frac{1}{n})x$$
 en $[0, 1]$

e)
$$f_n(x) = \begin{cases} \frac{1}{n} & \text{si } x \notin \mathbb{Q} \text{ o } x = 0\\ b + \frac{1}{n} & \text{si } x = \frac{a}{b}, \ b > 0, \ (a:b) = 1 \end{cases}$$
 en [0, 1]

19. Probar que la sucesión de funciones

$$f_n(x) = \frac{x}{1+x^2} - \frac{x(x^2+1)}{1+(n+1)^2 x^2}$$

converge puntualmente en $\mathbb R$ a una función continua, pero que la convergencia no es uniforme.

- **20.** Sea $S \subset \mathbb{R}^k$ y sea (f_n) una sucesión de funciones $f_n : S \longrightarrow \mathbb{R}$ que converge uniformemente a una función $f : S \longrightarrow \mathbb{R}$. Probar que si cada f_n es acotada, entonces
 - (i) f es acotada
 - (ii) existe $M \in \mathbb{R}$ tal que $|f_n(x)| \leq M$ para todo $x \in S$ y todo $n \in \mathbb{N}$; es decir, (f_n) es uniformemente acotada en S.
- **21.** Sea $S \subset \mathbb{R}^k$ y sean (f_n) y (g_n) dos sucesiones de funciones de S en \mathbb{R} tales que $f_n \rightrightarrows f$ en S y $g_n \rightrightarrows g$ en S^{-1} . Probar que

a)
$$f_n + g_n \Rightarrow f + g$$
 en S

- b) si cada f_n y cada g_n está acotada, entonces $f_n g_n \longrightarrow f g$
- c) —en general— no es cierto que $f_n g_n \rightrightarrows fg$ en S.

 Sugerencia: considerar las sucesiones de funciones del ejercicio 18 d) y e).
- **22.** Sea (f_n) la sucesión de funciones $f_n:[0,1] \longrightarrow \mathbb{R}$ definidas por $f_n(x) = n^2 x (1-x)^n$
 - a) Probar que (f_n) converge puntualmente a la función $f \equiv 0$ en [0, 1]
 - b) Verificar que existe

$$\lim \int_0^1 f_n(x) \, dx$$

y que

$$\lim \left(\int_0^1 f_n(x) \ dx \right) \quad \neq \quad \int_0^1 (\lim f_n(x)) \ dx$$

¹la doble flecha

indica convergencia uniforme