Análisis II - Matemática 3

Práctica 5 - Integrales sobre superficies

- 1. Dar una ecuación en coordenadas cartesianas para las superficies dadas en coordenadas esféricas por r=k (k=cte). Graficar. Y ahora por $\varphi=k$, $0< k<\pi/2$. Hallar un vector normal en cada punto.
- 2. (a) Mostrar que $\Phi_1: \mathbb{R}^2 \to \mathbb{R}^3$ y $\Phi_2: \mathbb{R}_{>0} \times [0, 2\pi) \to \mathbb{R}^3$ dadas por

$$\Phi_1(u,v) = (u,v,\frac{u^2}{a^2} + \frac{v^2}{b^2})$$
 $\Phi_2(u,v) = (au\cos(v),bu\sin(v),u^2)$

son dos parametrizaciones del paraboloide elíptico.

(b) Mostrar que

$$\Phi(u,v) = ((a+b\cos(u))\sin(v), (a+b\cos(u))\cos(v), b\sin(u))$$

0 < b < a, y $u, v \in [0, 2\pi]$, es una parametrización del toro.

3. Considerar la superficie

$$x = u\cos(v)$$
 $y = u\sin(v)$ $z = u$

¿Es diferenciable esta superficie? ¿Es suave?

- 4. Si la superficie es el gráfico de una función diferenciable $g: \mathbb{R}^2 \to \mathbb{R}$, demostrar que se trata de una superficie suave. ¿Qué pasa si g no es diferenciable?
- 5. Encontrar una ecuación para el plano tangente a la superficie en el punto especificado

(a)
$$x = 2u$$
, $y = u^2 + v$, $z = v^2$ en el punto $(0, 1, 1)$.

(b)
$$x = u^2 - v^2$$
, $y = u + v$, $z = u^2 + 4v$ en el punto $(-1/4, 1/2, 2)$.

- 6. Sea h una función diferenciable. Encontrar una fórmula para el plano tangente a la superficie x=h(y,z) en el punto $(h(y_0,z_0),y_0,z_0)$
- 7. Sea $\phi(r,\theta): [0,1] \times [0,2\pi] \to \mathbb{R}^3$ dada por

$$x = r\cos(\theta)$$
 $y = r\sin(\theta)$ $z = \theta$

Graficar. Hallar el vector normal en cada punto y por último hallar su área.

8. Sea $\phi : \{(u, v)/u^2 + v^2 \le 1\} \to \mathbb{R}^3$

$$\phi(u,v) = (u-v, u+v, uv)$$

Calcular su área.

- 9. Calcular el área de la superficie $x^2+y^2+z^2=R^2$ con $(x-R/2)^2+y^2\leq (R/2)^2$. (Bóveda de Viviani).
- 10. Sea la curva z = f(x) $x \in [\alpha, \beta]$ con f y α positivos, girada alrededor del eje z. Mostrar que el área de la superficie barrida es

$$A = 2\pi \int_{\alpha}^{\beta} x \sqrt{1 + (f'(x))^2} \ dx$$

Aplicar a la superficie dada en el ejercicio 2 item (a) para calcular el área del paraboloide elíptico con $1 \le z \le 2$, y a = b = 1.

- 11. Calcular $\int_S xy \ dS$ donde S es el borde del tetraedro con lados $z=0, \ y=0, \ x+z=1$ y x=y.
- 12. Calcular $\int_S (x+y+z) dS$ donde S es el borde de la bola unitaria, es decir $S = \{(x,y,z)/x^2 + y^2 + z^2 = 1\}.$
- 13. Hallar la masa de una superficie esférica de radio r y centro (0,0,0) tal que en cada punto $(x,y,z) \in S$ la densidad de masa es igual a la distancia entre (x,y,z) y el punto (0,0,r).
- 14. Evaluar el flujo saliente del campo $\mathbf{F}(x, y, z) = (x, y, z)$ a través de la superficie del cubo $[0, 1] \times [0, 1] \times [0, 1]$.
- 15. Sea la temperatura de un punto de \mathbb{R}^3 dada por la función $T(x,y,z)=3x^2+3z^2$ calcular el flujo de calor (es decir el flujo del campo $-\nabla T$) a través de la superficie $x^2+z^2=2,\ 0\leq y\leq 2$, orientada de forma que la normal en el punto $(0,0,\sqrt{2})$ sea (0,0,1).
- 16. Sea S la superficie de la esfera unitaria orientada según la normal exterior. Sea ${\bf F}$ un campo vectorial y F_r su componente radial. Probar que

$$\int_{S} \mathbf{F} \cdot d\mathbf{S} = \int_{0}^{2\pi} \int_{0}^{\pi} F_{r} \sin(\phi) \, d\phi \, d\theta$$

17. Sea S la parte del cono $z^2 = x^2 + y^2$ con z entre 1 y 2 orientada con la normal apuntando hacia el exterior del cono. Calcular $\int_S \mathbf{F} \cdot d\mathbf{S}$ con $\mathbf{F}(x,y,z) = (x^2, y^2, z^2)$.

18. Sean S una superficie y C una curva cerrada que es el borde de S. Verificar que si \mathbf{F} es un campo gradiente ($\mathbf{F} = \nabla f$) entonces

$$\int_{S} \nabla \times \mathbf{F} \cdot d\mathbf{S} = \int_{C} \mathbf{F} \cdot d\mathbf{s}$$

19. Sea $\mathbf{F}(x,y,z)=(x,x^2,yx^2)$ que representa el campo de velocidad de un fluido (velocidad medida en metros por segundo). Calcular cuántos metros cúbicos de fluido por segundo cruzan el plano xy a través del cuadrado $0 \le x \le 1, \ 0 \le y \le 1$.