Análisis Complejo

Práctica N°5.

- 1. Sea f entera y R un número real positivo tal que $|f(z)| \leq M|z|^n$ para todo z tal que |z| > R. Probar que f es un polinomio de grado menor o igual que n.
- 2. Hallar todas las funciones enteras tales que $\lim_{|z| \to \infty} |f(z)| = 5$.
- 3. Sea $u: \mathbb{R}^2 \to \mathbb{R}$ armónica no survectiva.
 - \bullet Probar que u está acotada superior o inferiormente.
 - Probar que u es constante (por lo tanto, toda función armónica es constante o suryectiva).
- 4. Sea f entera tal que existen dos números complejos, z_0 y z_1 , \mathbb{R} -linealmente independientes, tales que $f(z+z_0)=f(z)$ y $f(z+z_1)=f(z)$ para todo $z\in\mathbb{C}$. Probar que f es constante.
- 5. (a) Sea $f: \Omega \to \mathbb{C}$ holomorfa, $f \not\equiv 0$. Probar que para cada $a \in \Omega$ tal que f(a) = 0 existen $n \in \mathbb{N}$ y $g: \Omega \to \mathbb{C}$ holomorfa con $g(a) \not\equiv 0$ tales que $f(z) = (z-a)^n g(z)$ para todo $z \in \Omega$.
 - (b) Con las hipótesis del ítem anterior, verificar que el conjunto de ceros de f es discreto. Deducir que en todo compacto de Ω f tiene sólo un número finito de ceros.
- 6. (a) ¿Existe f holomorfa en $\{|z|<1\}$ tal que $f(\frac{1}{2n})=f(\frac{1}{2n+1})=\frac{1}{n}$ para todo $n\in\mathbb{N}$?
 - (b) ¿Existe f holomorfa en $\{|z|<1\}$ tal que $f(\frac{1}{n})=\frac{1}{2n+1}$ para todo $n\in\mathbb{N}, n>1$?
- 7. Hallar todas las funciones enteras tales que para todo $n \in \mathbb{N}$,

$$n^2 f\left(\frac{1}{n}\right)^3 + f\left(\frac{1}{n}\right) = 0.$$

- 8. Sea $f:\{|z|<1\}\to\mathbb{C}, f(z)=\cos\left(\frac{1+z}{1-z}\right)$. Verificar que los ceros de f son los puntos de la forma $z_n=\frac{n\pi-2}{n\pi+2}$ con n impar, que f es holomorfa en $\{|z|<1\}$ y que los ceros de f tienen un punto de acumulación. ¿Es $f\equiv 0$ en $\{|z|<1\}$? ¿Contradice esto algún resultado conocido?
- 9. Sean Ω un abierto conexo del plano complejo y $f,g:\Omega\to\mathbb{C}$ dos funciones holomorfas que no se anulan en Ω . Si existe una sucesión $(a_n)_{n\geq 1}$ de puntos de Ω tales que $\lim_{n\to\infty}a_n=a\in\Omega,\ a_n\neq a$ para todo $n\in\mathbb{N}$ y además

$$\frac{f'(a_n)}{f(a_n)} = \frac{g'(a_n)}{g(a_n)} \text{ para todo } n \in \mathbb{N},$$

probar que existe una constante c tal que f(z) = cg(z) en Ω .

- 10. Demostrar que si Ω es un abierto conexo del plano complejo, f y g son holomorfas en Ω y $\overline{f}g$ es holomorfa en Ω , entonces $g \equiv 0$ o f es constante.
- 11. Formular y demostrar el "principio de módulo mínimo" para funciones holomorfas.
- 12. Sean $\Omega \subset \mathbb{C}$ conexo con $\overline{\Omega}$ compacto y $f:\Omega \to \mathbb{C}$ holomorfa y no constante tal que |f(z)|= cte para todo $z\in\partial\overline{\Omega}$. Probar que existe $z\in\Omega$ tal que f(z)=0.
- 13. Sea Ω un abierto acotado y conexo y consideremos n puntos P_1, P_2, \ldots, P_n en el plano \mathbb{R}^2 . Probar que el producto $\overline{PP_1} \cdot \ldots \cdot \overline{PP_n}$ de las distancias de un punto P en $\overline{\Omega}$ a los puntos P_1, \ldots, P_n alcanza su máximo en un punto de la frontera de Ω .
- 14. Sea $f:\{|z|<1\}\to\{|z|<1\}$ holomorfa. Probar que si existen dos números complejos distintos a y b tales que f(a)=a y f(b)=b, entonces $f(z)\equiv z$. (Sugerencia: Considerar la función

$$g(z) = \frac{h(z) - a}{1 - \overline{a}h(z)}, \quad \text{con} \quad h(z) = f\left(\frac{z + a}{1 + \overline{a}z}\right)$$

y usar el Lema de Schwarz).