Análisis Complejo

Primer Cuatrimestre — 2009

Segundo parcial — Recuperatorio

Apellido y nombre:	
L.U.:	Páginas:

1. Sea $f: \mathbb{C} \to \mathbb{C}$ una función meromorfa con polos simples y residuos enteros. Entonces existe una función meromorfa $g: \mathbb{C} \to \mathbb{C}$ tal que f = g'/g.

Solución. Supongamos que $A=\{\alpha_i:i\in I\}$ es el conjunto de polos de f y, para cada $i\in I$, sea m_i el residuo de f en α_i . El conjunto A es discreto, así que del teorema de Weierstraß sabemos que sabemos que existen polinomios $p_i\in\mathbb{C}[z]$, para cada $i\in I$, de manera que los productos

$$g(z) = \prod_{\substack{i \in I \\ m_i > 0}} \left(1 - \frac{z}{\alpha_i}\right) \mathrm{e}^{p_i(z)} \qquad \mathrm{y} \qquad h(z) = \prod_{\substack{i \in I \\ m_i < 0}} \left(1 - \frac{z}{\alpha_i}\right) \mathrm{e}^{p_i(z)}$$

convergen normalmente en $\mathbb{C} \setminus A$ a funciones enteras, y allí es

$$\frac{g'(z)}{g(z)} = \sum_{\substack{i \in I \\ m_i > 0}} \left(\frac{m_i}{z - \alpha_i} + p_i'(z) \right) \qquad \mathbf{y} \qquad \frac{h'(z)}{h(z)} = \sum_{\substack{i \in I \\ m_i < 0}} \left(\frac{m_i}{z - \alpha_i} + p_i'(z) \right),$$

con las series normalmente convergentes en $\mathbb{C} \setminus A$ a funciones meromorfas. La diferencia

$$r(z) = f - \left(\frac{g'(z)}{g(z)} - \frac{h'(z)}{h(z)}\right)$$

es una función meromorfa con polos a lo sumo simples contenidos en A. Como claramente el residuo de f en cada elemento de A es nulo, de hecho r es una función entera. Sea R una primitiva de r, de manera que R'=r, y sea $k(z)=\mathrm{e}^{R(z)}$, de manera que k'(z)/k(z)=r(z). Entonces si ponemos w(z)=g(z)k(z)/h(z), se trata de una función meromorfa y

$$f = \frac{g'(z)}{g(z)} - \frac{h'(z)}{h(z)} + \frac{k'(z)}{k(z)} = \frac{w'(z)}{w(z)}.$$

2. (a) Si $n \in \mathbb{N}$, entonces la ecuación

$$e^z = 3z^n$$

tiene exactamente n raíces distintas en $B_1(0)$.

(b) Determine la cantidad de raíces que el polinomio z^5+iz^3-4z+i tiene en el conjunto $\{z\in\mathbb{C}:1<|z|<2\}.$

Solución. (a) Sea
$$f(z) = e^z - 3z^n$$
. Si $|z| = 1$, es
$$|(e^z - 3z^n) - (-3z^n)| = |e^z| = e^{Re(z)} < e < 3 = |-3z^n|,$$

así que f y $3z^n$ tienen la misma cantidad de ceros en $B_1(0)$. Si $z_0 \in B_1(0)$ es uno de los ceros de f, de manera que $e^{z_0}=3z_0^n$, es claro que $z_0 \neq 0$ y entonces

$$f'(z_0) = e^{z_0} - 3nz_0^{n-1} = 3z_0^n - 3nz_0^{n-1} = 3z_0^{n-1}(z_0 - n) \neq 0.$$

Esto nos dice que z_0 es un cero *simple* y prueba que f tiene n ceros distintos en $B_1(0)$. (b) Llamemos f al polinomio y sea g el polinomio -4z+i. Si |z|=1 entonces

$$|f(z) - g(z)| = |z^5 + iz^3| \le 2 < 3 \le 4|z| - 1 \le |g(z)|.$$

Luego f y g tienen la misma cantidad de raíces en $B_1(0)$, a saber, una, y f no se anula sobre $\partial B_1(0)$. Por otro lado, si |z|=2 es

$$|f(z) - z^5| = |iz^3 - 4z + i| \le |iz^3| + 4|z| + 1 = 17 < 32 = |z^5|,$$

de manera que f y z^5 tienen la misma cantidad de raíces en $B_2(0)$ y que f no se anula sobre $\partial B_2(0)$. Concluimos de esta forma que f tiene cuatro raíces en el anillo $\{z \in \mathbb{C} : 1 < |z| < 2\}$.

3. Calcule el valor principal de la integral

$$\int_{-\infty}^{\infty} \frac{x \sin \pi x}{x^2 + 2x + 5} \, \mathrm{d}x.$$

Solución. Sea $f:\mathbb{C}\to\mathbb{C}$ la función tal que $f(z)=\frac{z}{z^2+2z+5}$. Sea R>0 y sea C_R la curva que se obtiene concatenando el segmento [-R,R] con $\gamma_R:t\in[0,\pi]\mapsto R\mathrm{e}^{it}\in\mathbb{C}$. La función $f(z)\mathrm{e}^{i\pi z}$ es meromorfa con polos simples en $-1\pm 2i$, y es inmediato ver que

$$\operatorname{res}(f(z)e^{i\pi z}, -1+2i) = \left(-\frac{1}{2} - \frac{i}{4}\right)e^{-2\pi}.$$

El teorema de los residuos nos dice entonces que

$$\int_{-R}^{R} f(z) e^{i\pi z} dz + \int_{\gamma_R} f(z) e^{i\pi z} dz = \left(\frac{1}{2} - i\right) \pi e^{-2\pi}.$$
 (1)

Si $R \gg 1$, es $|Re^{it}f(Re^{it})| \le 1$, así que

$$\left| \int_{\gamma_R} f(z) \mathrm{e}^{i\pi z} \, \mathrm{d}z \right| = \left| \int_0^\pi f(R \mathrm{e}^{it}) \mathrm{e}^{i\pi R \mathrm{e}^{it}} iR \mathrm{e}^{it} \, \mathrm{d}t \right| \leq \int_0^\pi |\mathrm{e}^{i\pi R \mathrm{e}^{it}}| \, \mathrm{d}t = \int_0^\pi \mathrm{e}^{-\pi R \, \mathrm{sen} \, t} \, \mathrm{d}t$$

y, como sen $t=\sin(\pi-t)$ si $t\in[0,\pi]$, esta última integral vale $2\int_0^{\pi/2} \mathrm{e}^{-\pi R \sin t} \,\mathrm{d}t$. La función $t\in[0,\pi/2]\mapsto \mathrm{e}^{-\pi R \sin t}\in\mathbb{R}$ es estrictamente decreciente, así que su máximo en $[0,1/\sqrt{R}]$ es 1 y en $[1/\sqrt{R},\pi/2]$ es $\mathrm{e}^{-\pi R \sin 1/R}$. Entonces

$$\begin{split} \int_0^{\pi/2} \mathrm{e}^{-\pi R \, \mathsf{sen} \, t} \, \mathrm{d}t &= \int_0^{1/\sqrt{R}} \mathrm{e}^{-\pi R \, \mathsf{sen} \, t} \, \mathrm{d}t + \int_{1/\sqrt{R}}^{\pi/2} \mathrm{e}^{-\pi R \, \mathsf{sen} \, t} \, \mathrm{d}t \\ &\leq \int_0^{1/\sqrt{R}} \, \mathrm{d}t + \int_{1/R}^{\pi/2} \mathrm{e}^{-\pi R \, \mathsf{sen} \, 1/\sqrt{R}} \, \mathrm{d}t \\ &= \frac{1}{\sqrt{R}} + \mathrm{e}^{-\pi R \, \mathsf{sen} \, 1/\sqrt{R}} \end{split}$$

y esta última expresión tiende a 0 cuando $R\to\infty$, ya que $R \sin 1/\sqrt{R} \sim \sqrt{R}$. Concluimos así que $\lim_{R\to\infty} \int_{\gamma_R} f(z) \mathrm{e}^{i\pi z} \,\mathrm{d}z = 0$ y, entonces, de (1), que

$$\text{v.p.} \int_{-\infty}^{\infty} f(z) \mathrm{e}^{i\pi z} \, \mathrm{d}z = \lim_{R \to \infty} \int_{-R}^{R} f(z) \mathrm{e}^{i\pi z} \, \mathrm{d}z = \left(\frac{1}{2} - i\right) \pi \mathrm{e}^{-2\pi}.$$

Finalmente, tenemos que

$$\mathrm{v.\,p.} \int_{-\infty}^{\infty} \frac{x \sin \pi x}{x^2 + 2x + 5} \, \mathrm{d}x = \mathrm{Im} \left(\mathrm{v.\,p.} \int_{-R}^{R} f(z) \mathrm{e}^{i\pi z} \, \mathrm{d}z \right) = -\pi \mathrm{e}^{-2\pi}.$$

4. Sea $f: B_1(0) \to \mathbb{C}$ una función holomorfa y supongamos que existe $r \in (0,1)$ tal que la restricción $f|_A$ de f a $A = \{z \in \mathbb{C} : r < |z| < 1\}$ es inyectiva. Entonces f es inyectiva.

Solución. Basta mostrar que f posee a lo sumo un cero en $B_1(0)$ simple.

Como f tiene a lo sumo un cero en A, porque $f|_A$ es inyectiva, y un número finito de ceros en $\overline{B}_r(0)$, tiene un número n finito de ceros en $B_1(0)$ y, en particular, existe $s \in (r,1)$ tal que todos los ceros de f están en $B_s(0)$ y

$$n=\frac{1}{2\pi i}\int_{\partial B_s(0)}\frac{f'(z)}{f(z)}\,\mathrm{d}z=\frac{1}{2\pi i}\int_{f(\partial B_s(0))}\frac{\mathrm{d}z}{z}=I(f\circ\gamma,0),$$

con γ una parametrización de $\partial B_s(0)$. Como $B_s(0) \subset A$ y $f|_A$ es inyectiva, la curva $f \circ \gamma$ es simple. Luego su índice con respecto a 0 es un elemento de $\{0,\pm 1\}$.

- **5.** (a) Sea $f: \mathbb{C} \to \mathbb{C}$ una función entera que no es constante y sea c > 0. Si $A_c = \{z \in \mathbb{C} : |f(z)| < c\}$ y $B_c = \{z \in \mathbb{C} : |f(z)| \le c\}$, entonces B_c es la clausura de A_c .
- (b) Si $p \in \mathbb{C}[z]$ un polinomio no constante y c > 0, entonces cada componente conexa del abierto $\{z \in \mathbb{C} : |p(z)| < c\}$ contiene una raíz de p.

Solución. (a) Es claro que $A_c \subset B_c$ y que B_c es cerrado, así que $\overline{A}_c \subset B_c$.

Sea $z_0 \in B_c$ y supongamos que $z_0 \notin A_c$, de manera que existe $\varepsilon > 0$ tal que $B_\varepsilon(z_0) \cap A_c = \{z_0\}$. Entonces si $z \in \overline{B}_{\varepsilon/2}(z_0)$ es $|f(z)| \ge c > 0$, y vemos que f no se anula en $\overline{B}_{\varepsilon/2}(z_0)$ y que alcanza su mínimo en el centro de este disco. Así, f debe ser constante, contradiciendo a la hipótesis. Esto prueba que debe ser $z_0 \in \overline{A}_c$ y, en definitiva, que $B_c \subseteq \overline{A}_c$.

(b) Sea Ω una componente conexta del abierto $\{z \in \mathbb{C} : |p(z)| < c\}$. Como $\lim_{|z| \to \infty} |p(z)| = \infty$, el conjunto Ω es acotado. Por otro lado, si $z \in \overline{\Omega} \setminus \Omega$, entonces |p(z)| = c. En efecto, en ese caso existen dos sucesiones $(u_n)_{n \geq 1}$ y $(v_n)_{n \geq 1}$ tales que $u_n \in \Omega$, $v_n \in \mathbb{C} \setminus \Omega$ y $\lim_{n \to \infty} u_n = \lim_{n \to \infty} v_n = z$, y entonces

$$c \ge \lim_{n \to \infty} |p(u_n)| = |p(z)| = \lim_{n \to \infty} |p(v_n)| \ge c$$
,

de manera que |p(z)| = c, como queríamos.

Del principio de máximo sabemos que

$$|p(z)| \le c \text{ si } z \in \Omega. \tag{2}$$

Supongamos, para llegar a un absurdo, que p no se anula en Ω . Entonces 1/p es una función continua en $\overline{\Omega}$ y holomorfa en Ω , y su módulo en $\partial\Omega$ es 1/c. Del principio de máximo, otra vez, vemos que

$$|1/p(z)| \le 1/c$$
 para todo $z \in \Omega$. (3)

De (2) y (3) vemos que |p| es constante en Ω y el principio de máximo, una vez más, nos permite concluir que p es constante. Esto es absurdo.

6. Sea f una función holomorfa en $\overline{\mathbb{C}} - \{-1,2\}$ que tiene en -1 un polo simple y en 2 un polo doble. Supongamos además que

(i)
$$res(f, -1) = 1$$
 y $res(f, 2) = 2$
(ii) $f(0) = \frac{7}{4}$ y $f(1) = \frac{5}{2}$

Determinar f y calcular su desarrollo en serie de Laurent en potencias de z en la corona 1 < |z| < 2 y el residuo de f en ∞ .

Solución. Como f es meromorfa con un número finito de polos en $\overline{\mathbb{C}}$, se trata de una función racional, digamos f=p/q con $p,q\in\mathbb{C}[z]$. Como ∞ no es uno de sus polos, deg $p\leq \deg q$. Del teorema de Mittag-Leffler sabemos que existen polinomios $u,v\in\mathbb{C}[z]$, un número $\alpha\in\mathbb{C}\setminus\{0\}$ y una función entera ϕ tal que

$$f(z) = \left(\frac{1}{z+1} - u(z)\right) + \left(\frac{\alpha}{(z-2)^2} + \frac{2}{z-2} - v(z)\right) + \phi(z)$$

Como f es acotada en ∞ , la función $\phi(z)-u(z)-v(z)$ también lo es, y como es entera, es constante. Luego vemos que, en definitiva, existe $\beta\in\mathbb{C}$ tal que

$$f(z) = \frac{1}{z+1} + \frac{\alpha}{(z-2)^2} + \frac{2}{z-2} + \beta.$$

Evaluando esto es 0 y en 1, podemos determinar α y β usando la condición (ii).

