Análisis Complejo

Primer Cuatrimestre — 2009

Práctica 5: Fórmula de Cauchy

- **1.** Sea $f: \mathbb{C} \to \mathbb{C}$ entera y sea $R \in \mathbb{R}$ un número real positivo tal que $|f(z)| \leq M|z|^n$ si |z| > R. Entonces f es un polinomio de grado menor o igual que n.
- **2.** Hallar todas las funciones enteras $f:\mathbb{C}\to\mathbb{C}$ para las cuales es

$$\lim_{|z|\to\infty}|f(z)|=5.$$

- **3.** Sea $u: \mathbb{R}^2 \to \mathbb{R}$ una función armónica no survectiva.
- (a) u está acotada superior o inferiormente.
- (b) u es constante.

Por lo tanto, toda función armónica es constante o suryectiva.

4. Sea $f: \mathbb{C} \to \mathbb{C}$ una función entera tal que existen dos números z_0 , $z_1 \in \mathbb{C}$ que son \mathbb{R} -linealmente independientes y para los que es

$$f(z+z_0) = f(z+z_1) = f(z)$$

cualquiera sea $z \in \mathbb{C}$. Muestre que f es constante.

- 5. (a) Sea $\Omega \subset \mathbb{C}$ un abierto y sea $f:\Omega \to \mathbb{C}$ una función holomorfa no idénticamente nula. Si $a\in\Omega$ es tal que f(a)=0, entonces existen $n\in\mathbb{N}$ y $g:\Omega\to\mathbb{C}$ holomorfa con $g(a)\neq 0$ tales que $f(z)=(z-a)^ng(z)$ para todo $z\in\Omega$.
- (b) Sea $\Omega \subset \mathbb{C}$ un abierto conexo y sea $f:\Omega \to \mathbb{C}$ una función holomorfa no idénticamente nula. Entonces el conjunto de ceros de f es discreto y en todo compacto de Ω la función f tiene sólo un número finito de ceros.
- **6.** (a) ¿Existe una función $f: B_1(0) \to \mathbb{C}$ holomorfa y tal que

$$f(\frac{1}{2n}) = f(\frac{1}{2n+1}) = \frac{1}{n}$$

para todo $n \in \mathbb{N}$?

(b) ¿Existe una función $f: B_1(0) \to \mathbb{C}$ holomorfa tal que

$$f(\frac{1}{n}) = \frac{1}{3-2n}$$

para todo $n \in \mathbb{N}$ con n > 1?

7. Hallar todas las funciones enteras tales que

$$n^2 f(\frac{1}{n})^3 + f(\frac{1}{n}) = 0$$

para todo $n \in \mathbb{N}$.

8. Sea $\Omega \subset \mathbb{C}$ un abierto no vacío conexo y simétrico con respecto a \mathbb{R} y sea $f:\Omega \to \mathbb{C}$ una función holomorfa tal que para todo $z\in\Omega\cap\mathbb{R}$ es $f(z)\in\mathbb{R}$. Entonces para todo $z\in\Omega$ se tiene que

$$f(\overline{z}) = \overline{f(z)}.$$

9. Consideremos la función

$$f: z \in B_1(0) \mapsto \cos \frac{1+z}{1-z} \in \mathbb{C}.$$

Muestre que los ceros de f son los puntos de la forma $z_n = \frac{n\pi-2}{n\pi+2}$ con $n \in \mathbb{N}$ impar, que f es holomorfa en $B_1(0)$ y que los ceros de f tienen un punto de acumulación. ¿Es $f \equiv 0$ en $B_1(0)$? ¿Contradice esto algún resultado conocido?

10. Sean $\Omega \subset \mathbb{C}$ un abierto conexo y sean f, $g:\Omega \to \mathbb{C}$ dos funciones holomorfas que no se anulan en Ω . Si existe una sucesión convergente $(a_n)_{n\geq 1}$ de puntos de Ω tal que $\lim_{n\to\infty} a_n = a \in \Omega$, si $a_n \neq a$ para todo $n \in \mathbb{N}$ y si además

$$\frac{f'(a_n)}{f(a_n)} = \frac{g'(a_n)}{g(a_n)}$$

para todo $n \in \mathbb{N}$, entonces existe una constante c tal que f(z) = cg(z) en Ω .

11. Si $\Omega \subset \mathbb{C}$ es un abierto conexo y si f, $g:\Omega \to \mathbb{C}$ son funciones holomorfas tales que $\overline{f}g$ es holomorfa en Ω , entonces $g\equiv 0$ o f es constante.

12. Sea $\Omega \subset \mathbb{C}$ un abierto acotado y conexo y sean $P_1, \ldots, P_n \in \mathbb{R}^2$. Probar que el producto $\overline{PP_1} \cdot \ldots \cdot \overline{PP_n}$ de las distancias de un punto P en $\overline{\Omega}$ a los puntos P_1, \ldots, P_n alcanza su máximo en un punto de la frontera de Ω .

13. Sea $f:\mathbb{C}\to\mathbb{C}$ una función entera tal que $f(0)=\frac{1}{2}$ y $|f(z)|\leq |e^z-\frac{1}{2}|$ para todo z en \mathbb{C} . Entonces $f(z)=e^z-\frac{1}{2}$ para todo z en \mathbb{C} .

14. Formule y demuestre un "principio de módulo mínimo" para funciones holomorfas.

15. Sean $\Omega \subset \mathbb{C}$ un abierto conexo con $\overline{\Omega}$ compacto y sea $f:\overline{\Omega} \to \mathbb{C}$ una función continua, holomorfa en Ω y no constante. Si |f| es constante sobre $\partial\overline{\Omega}$, entonces existe $z\in\Omega$ tal que f(z)=0.

16. Sea $f: B_1(0) \to B_1(0)$ una función holomorfa. Si existen dos números complejos distintos $a, b \in B_1(0)$ tales que f(a) = a y f(b) = b, entonces f(z) = z para todo $z \in B_1(0)$.

Sugerencia. Considere la función $g(z)=\frac{h(z)-a}{1-\overline{a}h(z)}$ con $h(z)=f\left(\frac{z+a}{1+\overline{a}z}\right)$ y use el Lema de Schwarz.

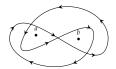
17. Sean f, $g: B_1(0) \to B_1(0)$ funciones holomorfas y biyectivas. Si f y g coinciden en dos puntos distintos de $B_1(0)$, entonces f(z) = g(z) para todo $z \in B_1(0)$.

18. Encuentre todas las funciones holomorfas $f: B_1(0) \to B_4(1)$ tales que f(0) = 3 y $f(\frac{1}{2}) = 1$.

19. Si $f: B_1(0) \to B_1(0)$ es una función holomorfa con f(0) = 0 y |f'(0)| = 1, entonces existe $\lambda \in \mathbb{C}$ con $|\lambda| = 1$ y tal que $f(z) = \lambda z$ para todo $z \in B_1(0)$.

20. Encuentre todas las funciones holomorfas $f: B_1(0) \to B_2(0)$ tales que f(0) = 1 y $f'(0) = \frac{3}{2}$.

21. Sean $a,b\in\mathbb{C}$ distintos, sea $\Omega=\mathbb{C}\setminus\{a,b\}$, y sea γ la curva en la siguiente figura:



- (a) Muestre que $\eta(\gamma, a) = \eta(\gamma, b) = 0$.
- (b) Convénzase de que γ no es homotópica a cero en Ω .

22. Si Ω es un abierto simplemente conexo y si $f:\Omega\to\mathbb{C}$ es una función holomorfa, entonces f tiene una primitiva en Ω . ¿Es necesaria la hipótesis de simple conexión?

23. (a) Sea $\Omega \subset \Omega$ un abierto simplemente conexo y sea $f: \Omega \to \mathbb{C}$ una función holomorfa y tal que $f(z) \neq 0$ para todo $z \in \Omega$. Sean $z_0 \in \Omega$ y $w_0 \in \mathbb{C}$ tales que $e^{w_0} = f(z_0)$. Entonces existe una función holomorfa $g: \Omega \to \mathbb{C}$ tal que $f(z) = e^{g(z)}$ para todo $z \in \Omega$ y $g(z_0) = w_0$.

Sugerencia. Considere la función g tal que $g' = \frac{f'}{f}$ y muestre que que $h = e^{-g}f$ es constante.

- (b) Muestre que la función g de (a) está unívocamente determinada.
- (c) Decida si, en las condiciones de (a), vale que

$$z_1, z_2 \in \Omega \text{ y } f(z_1) = f(z_2) \implies g(z_1) = g(z_2).$$

(d) ¿Es necesaria la hipótesis de simple conexión en (a)?

24. Sean f, $g: \mathbb{C} \to \mathbb{C}$ funciones enteras. Entonces $f^2(z) + g^2(z) = 1$ para todo $z \in \mathbb{C}$ si y sólo si existe una función entera $h: \mathbb{C} \to \mathbb{C}$ tal que $f(z) = \cos(h(z))$ y $g(z) = \sin(h(z))$.

Sugerencia. Observe que 1=(f+ig)(f-ig), de manera que $(f+ig)(z)\neq 0$ para todo $z\in\Omega$.

Joseph Liouville 1809–1882, Francia

Aparte de su teorema sobre las funciones enteras acotadas, y de muchas otras contribuciones a la matemática, Liouville es recordado por haber exhibido por primera vez números trascendentes.