
Chapter 7

The Prime Number Theorem

In this final chapter we will take advantage of an opportunity to apply many of the
ideas and results from earlier chapters in order to give an analytic proof of the famous
prime number theorem: If π(x) is the number of primes less than or equal to x, then
x−1π(x) lnx → 1 as x → ∞. That is, π(x) is asymptotically equal to x/ lnx as x → ∞.
(In the sequel, prime will be taken to mean positive prime.)

Perhaps the first recorded property of π(x) is that π(x)→∞ as x→∞, in other words,
the number of primes is infinite. This appears in Euclid’s “Elements”. A more precise
result that was established much later by Euler (1737) is that the series of reciprocals of
the prime numbers,

1
2

+
1
3

+
1
5

+
1
7

+
1
11
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is a divergent series. This can be interpreted in a certain sense as a statement about
how fast π(x) → ∞ as x → ∞. Later, near the end of the 18-th century, mathemati-
cians, including Gauss and Legendre, through mainly empirical considerations, put forth
conjectures that are equivalent to the above statement of the prime number theorem
(PNT). However, it was not until nearly 100 years later, after much effort by numerous
19-th century mathematicians, that the theorem was finally established (independently)
by Hadamard and de la Vallée Poussin in 1896. The quest for a proof led Riemann, for
example, to develop complex variable methods to attack the PNT and related questions.
In the process, he made a remarkable and as yet unresolved conjecture known as the
Riemann hypothesis, whose precise statement will be given later. Now it is not clear on
the surface that there is a connection between complex analysis and the distribution of
prime numbers. But in fact, every proof of the PNT dating from Hadamard and de la
Vallée Poussin, up to 1949 when P. Erdös and A.Selberg succeeded in finding “elemen-
tary” proofs, has used the methods of complex variables in an essential way. In 1980, D.J.
Newman published a new proof of the PNT which, although still using complex analy-
sis, nevertheless represents a significant simplification of previous proofs. It is Newman’s
proof, as modified by J. Korevaar, that we present in this chapter.

There are a number of preliminaries that must be dealt with before Newman’s method
can be applied to produce the theorem. The proof remains far from trivial but the steps
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2 CHAPTER 7. THE PRIME NUMBER THEOREM

along the way are of great interest and importance in themselves. We begin by introducing
the Riemann zeta function, which arises via Euler’s product formula and forms a key link
between the sequence of prime numbers and the methods of complex variables.

7.1 The Riemann Zeta function

The Riemann zeta function is defined by

ζ(z) =
∞∑

n=1

1
nz

where nz = ez ln n. Since |nz| = nRe z, the given series converges absolutely on Re z > 1
and uniformly on {z : Re z ≥ 1 + δ} for every δ > 0. Let p1, p2, p3, . . . be the sequence
2,3,5, . . . of prime numbers and note that for j = 1, 2, . . . and Re z > 1, we have

1
1− 1/pz

j

= 1 +
1
pz

j

+
1

p2z
j

+ · · · .

Now consider the partial product

m∏
j=1

1
1− p−z

j

=
m∏

j=1

(1 +
1
pz

j

+
1

p2z
j

+ · · · ).

By multiplying the finitely many absolutely convergent series on the right together, rear-
ranging, and applying the fundamental theorem of arithmetic, we find that the product is
the same as the sum

∑
n∈Pm

1
nz , where Pm consists of 1 along with those positive integers

whose prime factorization uses only primes from the set {p1, . . . , pm}. Therefore

∞∏
j=1

1
1− p−z

j

=
∞∑

n=1

1
nz

, Re z > 1.

We now state this formally.

7.1.1 Euler’s Product formula

For Re z > 1, the Riemann zeta function ζ(z) =
∑∞

n=1 1/nz is given by the product

∞∏
j=1

(
1

1− p−z
j

)

where {pj} is the (increasing) sequence of prime numbers.
The above series and product converge uniformly on compact subsets of Re z > 1,

hence ζ is analytic on Re z > 1. Furthermore, the product representation of ζ shows that
ζ has no zeros in Re z > 1 (Theorem 6.1.7). Our proof of the PNT requires a number
of additional properties of ζ. The first result is concerned with extending ζ to a region
larger than Re z > 1.
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7.1.2 Extension Theorem for Zeta

The function ζ(z)− 1/(z − 1) has an analytic extension to the right half plane Re z > 0.
Thus ζ has an analytic extension to {z : Re z > 0, z 	= 1} and has a simple pole with
residue 1 at z = 1.
Proof. For Re z > 1, apply the summation by parts formula (Problem 2.2.7) with an = n
and bn = 1/nz to obtain

k−1∑
n=1

n

[
1

(n + 1)z
− 1

nz

]
=

1
kz−1

− 1−
k−1∑
n=1

1
(n + 1)z

.

Thus

1 +
k−1∑
n=1

1
(n + 1)z

=
1

kz−1
−

k−1∑
n=1

n

[
1

(n + 1)z
− 1

nz

]
.

But

n

[
1

(n + 1)z
− 1

nz

]
= −nz

∫ n+1

n

t−z−1 dt = −z

∫ n+1

n

[t]t−z−1 dt

where [t] is the largest integer less than or equal to t. Hence we have

k∑
n=1

1
nz

= 1 +
k−1∑
n=1

1
(n + 1)z

=
1

kz−1
+ z

k−1∑
n=1

∫ n+1

n

[t]t−z−1 dt

=
1

kz−1
+ z

∫ k

1

[t]t−z−1 dt.

Letting k →∞, we obtain the integral formula

ζ(z) = z

∫ ∞
1

[t]t−z−1 dt (1)

for Re z > 1. Consider, however, the closely related integral

z

∫ ∞
1

tt−z−1 dt = z

∫ ∞
1

t−z dt =
z

z − 1
= 1 +

1
z − 1

.

Combining this with (1) we can write

ζ(z)− 1
z − 1

= 1 + z

∫ ∞
1

([t]− t)t−z−1 dt.

Now fix k > 1 and consider the integral
∫ k

1
([t]− t)t−z−1 dt. By (3.3.3), this integral is an

entire function of z. furthermore, if Re z > 0, then

|
∫ k

1

([t]− t)t−z−1 dt| ≤
∫ k

1

t−Re(z+1) dt ≤
∫ ∞

1

t−1−Re z dt =
1

Re z
.
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This implies that the sequence fk(z) =
∫ k

1
([t]−t)t−z−1 dt of analytic functions on Re z > 0

is uniformly bounded on compact subsets. Hence by Vitali’s theorem (5.1.14), the limit
function

f(z) =
∫ ∞

1

([t]− t)t−z−1 dt

(as the uniform limit on compact subsets of Re z > 0) is analytic, and thus the function

1 + z

∫ ∞
1

([t]− t)t−z−1 dt

is also analytic on Re z > 0. But this function agrees with ζ(z) − 1
z−1 for Re z > 1, and

consequently provides the required analytic extension of ζ to Re z > 0. This completes
the proof of the theorem. ♣

We have seen that Euler’s formula (7.1.1) implies that ζ has no zeros in the half plane
Re z > 1, but how about zeros of (the extension of) ζ in 0 < Re z ≤ 1? The next theorem
asserts that ζ has no zeros on the line Re z = 1. This fact is crucial to our proof of the
PNT.

7.1.3 Theorem

The Riemann zeta function has no zeros on Re z = 1, so (z − 1)ζ(z) is analytic and
zero-free on a neighborhood of Re z ≥ 1.
Proof. Fix a real number y 	= 0 and consider the auxiliary function

h(x) = ζ3(x)ζ4(x + iy)ζ(x + i2y)

for x real and x > 1. By Euler’s product formula, if Re z > 1 then

ln |ζ(z)| = −
∞∑

j=1

ln |1− p−z
j | = −Re

∞∑
j=1

Log(1− p−z
j ) = Re

∞∑
j=1

∞∑
n=1

1
n

p−nz
j

where we have used the expansion −Log(1− w) =
∑∞

n=1 wn/n, valid for |w| < 1. Hence

ln |h(x)| = 3 ln |ζ(x)|+ 4 ln |ζ(x + iy)|+ ln |ζ(x + i2y)|

= 3 Re
∞∑

j=1

∞∑
n=1

1
n

p−nx
j + 4 Re

∞∑
j=1

∞∑
n=1

1
n

p−nx−iny
j

+ Re
∞∑

j=1

∞∑
n=1

1
n

p−nx−i2ny
j

=
∞∑

j=1

∞∑
n=1

1
n

p−nx
j Re(3 + 4p−iny

j + p−i2ny
j ).

But p−iny
j = e−iny ln pj and p−i2ny

j = e−i2ny ln pj . Thus Re(3 + 4p−iny
j + p−i2ny

j ) has the
form

3 + 4 cos θ + cos 2θ = 3 + 4 cos θ + 2 cos2 θ − 1 = 2(1 + cos θ)2 ≥ 0.
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Therefore ln |h(x)| ≥ 0 and consequently

|h(x)| = |ζ3(x)||ζ4(x + iy)||ζ(x + i2y)| ≥ 1.

Thus

|h(x)|
x− 1

= |(x− 1)ζ(x)|3
∣∣∣∣ζ(x + iy)

x− 1

∣∣∣∣
4

|ζ(x + i2y)| ≥ 1
x− 1

.

But if ζ(1+iy) = 0, then the left hand side of this inequality would approach a finite limit
|ζ ′(1+ iy)|4|ζ(1+ i2y)| as x→ 1+ since ζ has a simple pole at 1 with residue 1. However,
the right hand side of the inequality contradicts this. We conclude that ζ(1 + iy) 	= 0.
Since y is an arbitrary nonzero real number, ζ has no zeros on Re z = 1. ♣

Remark

The ingenious introduction of the auxiliary function h is due to Mertens (1898). We
now have shown that any zeros of ζ in Re z > 0 must lie in the strip 0 < Re z < 1.
The study of the zeros of ζ has long been the subject of intensive investigation by many
mathematicians. Riemann had stated in his seminal 1859 paper that he considered it
“very likely” that all the zeros of ζ in the above strip, called the critical strip, lie on the
line Re z = 1/2. This assertion is now known as the Riemann hypothesis, and remains
as yet unresolved. However, a great deal is known about the distribution of the zeros
of ζ in the critical strip, and the subject continues to capture the attention of eminent
mathematicians. To state just one such result, G.H. Hardy proved in 1915 that ζ has
infinitely many zeros on the line Re z = 1/2. Those interested in learning more about this
fascinating subject may consult, for example, the book Riemann’s Zeta Function by H.M.
Edwards. Another source is http://mathworld.wolfram.com/RiemannHypothesis.html.

We turn next to zeta’s logarithmic derivative ζ ′/ζ, which we know is analytic on
Re z > 1. In fact, more is true, for by (7.1.3), ζ ′/ζ is analytic on a neighborhood of
{z : Re z ≥ 1 and z 	= 1}. Since ζ has a simple pole at z = 1, so does ζ ′/ζ, with residue
Res(ζ ′/ζ, 1) = −1. [See the proof of (4.2.7).] We next obtain an integral representation
for ζ ′/ζ that is similar to the representation (1) above for ζ. [See the proof of (7.1.2).]
But first, we must introduce the von Mangoldt function Λ, which is defined by

Λ(n) =

{
ln p if n = pm for some m,

0 otherwise.

Thus Λ(n) is ln p if n is a power of the prime p, and is 0 if not. Next define ψ on x ≥ 0 by

ψ(x) =
∑
n≤x

Λ(n). (2)

An equivalent expression for ψ is

ψ(x) =
∑
p≤x

mp(x) ln p,
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where the sum is over primes p ≤ x and mp(x) is the largest integer such that pmp(x) ≤ x.
(For example, ψ(10.4) = 3 ln 2 + 2 ln 3 + ln 5 + ln 7.) Note that pmp(x) ≤ x iff mp(x) ln p ≤
lnx iff mp(x) ≤ ln x

ln p . Thus mp(x) =
[

ln x
ln p

]
where as before, [ ] denotes the greatest integer

function. The function ψ will be used to obtain the desired integral representation for
ζ ′/ζ.

7.1.4 Theorem

For Re z > 1,

−ζ ′(z)
ζ(z)

= z

∫ ∞
1

ψ(t)t−z−1 dt (3)

where ψ is defined as above.
Proof. In the formulas below, p and q range over primes. If Re z > 1, we have ζ(z) =∏

p(1− p−z)−1 by (7.1.1), hence

ζ ′(z) =
∑

p

−p−z ln p

(1− p−z)2
∏
q �=p

1
1− q−z

= ζ(z)
∑

p

−p−z ln p

(1− p−z)2
(1− p−z)

= ζ(z)
∑

p

−p−z ln p

1− p−z
.

Thus

−ζ ′(z)
ζ(z)

=
∑

p

p−z ln p

1− p−z
=

∑
p

∞∑
n=1

p−nz ln p.

The iterated sum is absolutely convergent for Re z > 1, so it can be rearranged as a double
sum ∑

(p,n),n≥1

(pn)−z ln p =
∑

k

k−z ln p

where k = pn for some n. Consequently,

−ζ ′(z)
ζ(z)

=
∞∑

k=1

k−zΛ(k) =
∞∑

k=1

k−z(ψ(k)− ψ(k − 1))

by the definitions of Λ and ψ. But using partial summation once again we obtain, with
ak = k−z, bk+1 = ψ(k), and b1 = ψ(0) = 0 in Problem 2.2.7,

M∑
k=1

k−z(ψ(k)− ψ(k − 1)) = ψ(M)(M + 1)−z +
M∑

k=1

ψ(k)(k−z − (k + 1)−z).
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Now from the definition (2) of ψ(x) we have ψ(x) ≤ x lnx, so if Re z > 1 we have
ψ(M)(M + 1)−z → 0 as M →∞. Moreover, we can write

M∑
k=1

ψ(k)(k−z − (k + 1)−z) =
M∑

k=1

ψ(k)z
∫ k+1

k

t−z−1 dt

=
M∑

k=1

z

∫ k+1

k

ψ(t)t−z−1 dt

= z

∫ M

1

ψ(t)t−z−1 dt

because ψ is constant on each interval [k, k + 1). Taking limits as M →∞, we finally get

−ζ ′(z)
ζ(z)

= z

∫ ∞
1

ψ(t)t−z−1 dt, Re z > 1. ♣

7.2 An Equivalent Version of the Prime Number The-
orem

The function ψ defined in (2) above provides yet another connection, through (3), between
the Riemann zeta function and properties of the prime numbers. The integral that appears
in (3) is called the Mellin transform of ψ and is studied in its own right. We next establish
a reduction, due to Chebyshev, of the prime number theorem to a statement involving
the function ψ.

7.2.1 Theorem

The prime number theorem holds, that is, x−1π(x) lnx→ 1, iff x−1ψ(x)→ 1 as x→∞.

Proof. Recall that

ψ(x) =
∑
p≤x

[
lnx

ln p

]
ln p

≤
∑
p≤x

lnx

ln p
ln p (1)

= lnx
∑
p≤x

1

= (lnx)π(x).
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However, if 1 < y < x, then

π(x) = π(y) +
∑

y<p≤x

1

≤ π(y) +
∑

y<p≤x

ln p

ln y
(2)

< y +
1

ln y

∑
y<p≤x

ln p

≤ y +
1

ln y
ψ(x).

Now take y = x/(lnx)2 in (2), and we get

π(x) ≤ x

(lnx)2
+

1
lnx− 2 ln lnx

ψ(x).

Thus

π(x)
lnx

x
≤ 1

lnx
+

lnx

lnx− 2 ln lnx

ψ(x)
x

. (3)

It now follows from (1) and (3) that

ψ(x)
x
≤ lnx

x
π(x) ≤ 1

lnx
+

lnx

lnx− 2 ln lnx

ψ(x)
x

and from this we can see that x−1ψ(x)→ 1 iff x−1π(x) lnx→ 1 as x→∞. ♣
The goal will now be to show that ψ(x)/x → 1 as x → ∞. A necessary intermediate

step for our proof is to establish the following weaker estimate on the asymptotic behavior
of ψ(x).

7.2.2 Lemma

There exists C > 0 such that ψ(x) ≤ Cx, x > 0. For short, ψ(x) = O(x).
Proof. Again recall that ψ(x) =

∑
p≤x[ ln x

ln p ] ln p, x > 0. Fix x > 0 and let m be an integer
such that 2m < x ≤ 2m+1. Then

ψ(x) = ψ(2m) + ψ(x)− ψ(2m)

≤ ψ(2m) + ψ(2m+1)− ψ(2m)

=
∑

p≤2m

[
ln 2m

ln p

]
ln p +

∑
2m<p≤2m+1

[
ln 2m+1

ln p

]
ln p.

Consider, for any positive integer n,∑
n<p≤2n

ln p = ln
∏

n<p≤2n

p.
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Now for any prime p such that n < p ≤ 2n, p divides (2n)!/n! = n!
(
2n
n

)
. Since such a p

does not divide n!, it follows that p divides
(
2n
n

)
. Hence

∏
n<p≤2n

p ≤
(

2n

n

)
< (1 + 1)2n = 22n,

and we arrive at ∑
n<p≤2n

ln p < 2n ln 2.

Therefore

∑
p≤2m

ln p =
m∑

k=1


 ∑

2k−1<p≤2k

ln p


 <

m∑
k=1

2k ln 2 < 2m+1 ln 2

and ∑
2m<p≤2m+1

ln p < 2m+1 ln 2.

But if p ≤ x is such that
[

ln x
ln p

]
> 1, then ln x

ln p ≥ 2 and hence x ≥ p2 so that
√

x ≥ p.

Thus those terms in the sum
∑

p≤x

[
ln x
ln p

]
ln p where

[
ln x
ln p

]
> 1 occur only when p ≤ √x,

and the sum of terms of this form contribute no more than∑
p≤√x

lnx

ln p
ln p = π(

√
x) lnx.

It follows from the above discussion that if 2m < x ≤ 2m+1, then

ψ(x) ≤ 2m+1 ln 2 + 2m+1 ln 2 + π(
√

x) lnx

= 2m+2 ln 2 + π(
√

x) lnx

< 4x ln 2 + π(
√

x) lnx

≤ 4x ln 2 +
√

x lnx

= (4 ln 2 +
1√
x

lnx)x.

Since 1√
x

lnx→ 0 as x→∞, we conclude that ψ(x) = O(x), which proves the lemma. ♣

7.3 Proof of the Prime Number Theorem

Our approach to the prime number theorem has been along traditional lines, but at this
stage we will apply D.J. Newman’s method (Simple Analytic Proof of the Prime Number
Theorem, American Math. Monthly 87 (1980), 693-696) as modified by J. Korevaar (On
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Newman’s Quick Way to the Prime Number Theorem, Math. Intelligencer 4 (1982), 108-
115). Korevaar’s approach is to apply Newman’s ideas to obtain properties of certain
Laplace integrals that lead to the prime number theorem.

Our plan is to deduce the prime number theorem from a “Tauberian” theorem (7.3.1)
and its corollary (7.3.2). Then we will prove (7.3.1) and (7.3.2).

7.3.1 Auxiliary Tauberian Theorem

Let F be bounded and piecewise continuous on [0,+∞), so that its Laplace transform

G(z) =
∫ ∞

0

F (t)e−zt dt

exists and is analytic on Re z > 0. Assume that G has an analytic extension to a neigh-
borhood of the imaginary axis, Re z = 0. Then

∫∞
0

F (t) dt exists as an improper integral
and is equal to G(0). [In fact,

∫∞
0

F (t)e−iyt dt converges for every y ∈ R to G(iy).]
Results like (7.3.1) are named for A. Tauber, who is credited with proving the first

theorem of this type near the end of the 19th century. The phrase “Tauberian theorem”
was coined by G.H. Hardy, who along with J.E. Littlewood made a number of contri-
butions in this area. Generally, Tauberian theorems are those in which some type of
“ordinary” convergence (e.g., convergence of

∫∞
0

F (t)e−iyt dt for each y ∈ R), is deduced
from some “weaker” type of convergence (e.g., convergence of

∫∞
0

F (t)e−zt dt for each z
with Re z > 0) provided additional conditions are satisfied (e.g., G has an analytic exten-
sion to a neighborhood of each point on the imaginary axis). Tauber’s original theorem
can be found in The Elements of Real Analysis by R.G. Bartle.

7.3.2 Corollary

Let f be a nonnegative, piecewise continuous and nondecreasing function on [1,∞) such
that f(x) = O(x). Then its Mellin transform

g(z) = z

∫ ∞
1

f(x)x−z−1 dx

exists for Re z > 1 and defines an analytic function g. Assume that for some constant c,
the function

g(z)− c

z − 1

has an analytic extension to a neighborhood of the line Re z = 1. Then as x→∞,

f(x)
x
→ c.

As stated earlier, we are first going to see how the prime number theorem follows from
(7.3.1) and (7.3.2). To this end, let ψ be as above, namely

ψ(x) =
∑
p≤x

[
lnx

ln p

]
ln p.
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Then ψ is a nonnegative, piecewise continuous, nondecreasing function on [1,∞). Fur-
thermore, by (7.2.2), ψ(x) = O(x), so by (7.3.2) we may take f = ψ and consider the
Mellin transform

g(z) = z

∫ ∞
1

ψ(x)x−z−1 dx.

But by (7.1.4), actually g(z) = −ζ ′(z)/ζ(z), and by the discussion leading up to the
statement of (7.1.4), ζ′(z)

ζ(z) + 1
z−1 has an analytic extension to a neighborhood of each

point of Re z = 1, hence so does g(z) − 1
z−1 . Consequently, by (7.3.2), we can conclude

that ψ(x)/x → 1, which, by (7.2.1), is equivalent to the PNT. Thus we are left with the
proof of (7.3.1) and its corollary (7.3.2).

Proof of (7.3.1)

Let F be as in the statement of the theorem. Then it follows just as in the proof of (7.1.2),
the extension theorem for zeta, that F ’s Laplace transform G is defined and analytic
on Re z > 0. Assume that G has been extended to an analytic function on a region
containing Re z ≥ 0. Since F is bounded we may as well assume that |F (t)| ≤ 1, t ≥ 0.
For 0 < λ <∞, define

Gλ(z) =
∫ λ

0

F (t)e−zt dt.

By (3.3.3), each function Gλ is entire, and the conclusion of our theorem may be expressed
as

lim
λ→∞

Gλ(0) = G(0).

That is, the improper integral
∫∞
0

F (t) dt exists and converges to G(0). We begin the
analysis by using Cauchy’s integral formula to get a preliminary estimate of |Gλ(0)−G(0)|.
For each R > 0, let δ(R) > 0 be so small that G is analytic inside and on the closed path

..

.

.
-iR

iR

−δ(R
) −δ1

γ -
R γ +R

γ -
Rγ +Rγ R = +

Figure 7.3.1

γR in Figure 7.3.1. (Note that since G is analytic on an open set containing Re z ≥ 0,
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such a δ(R) > 0 must exist, although it may well be the case that δ(R)→ 0 as R→ +∞.)
Let γ+

R denote that portion of γR that lies in Re z > 0, and γ−R the portion that lies in
Re z < 0. By Cauchy’s integral formula,

G(0)−Gλ(0) =
1

2πi

∫
γR

(G(z)−Gλ(z))
1
z

dz. (1)

Let us consider the consequences of estimating |G(0)−Gλ(0)| by applying the usual M-
L estimates to the integral on the right hand side of (1) above. First, for z ∈ γ+

R and
x = Re z, we have ∣∣∣∣G(z)−Gλ(z)

z

∣∣∣∣ =
1
R

∣∣∣∣
∫ ∞

λ

F (t)e−zt dt

∣∣∣∣
≤ 1

R

∫ ∞
λ

|F (t)|e−xt dt

≤ 1
R

∫ ∞
λ

e−xt dt

=
1
R

e−λx

x
(2)

≤ 1
R

1
x

=
1
R

1
Re z

.

But 1/ Re z is unbounded on γ+
R , so we see that a more delicate approach is required to

shows that G(0) − Gλ(0) → 0 as λ → ∞. Indeed, it is here that Newman’s ingenuity
comes to the fore, and provides us with a modification of the above integral representation
for G(0)−Gλ(0). This will furnish the appropriate estimate. Newman’s idea is to replace
the factor 1/z by (1/z) + (z/R2) in the path integral in (1). Since (G(z)−Gλ(z))z/R2 is
analytic, the value of the path integral along γR remains unchanged. We further modify
(1) by replacing G(z) and Gλ(z) by their respective products with eλz. Since eλz is entire
and has the value 1 at z = 0, we can write

G(0)−Gλ(0) =
1

2πi

∫
γR

(G(z)−Gλ(z))eλz(
1
z

+
z

R2
) dz.

Note that for |z| = R we have (1/z) + (z/R2) = (z/|z|2) + (z/R2) = (2 Re z)/R2, so that
if z ∈ γ+

R , (recalling (2) above),

|(G(z)−Gλ(z))eλz(
1
z

+
z

R2
)| ≤ 1

Re z
e−λ Re zeλ Re z 2 Re z

R2
=

2
R2

.

Consequently, ∣∣∣∣∣ 1
2πi

∫
γ+

R

(G(z)−Gλ(z))eλz(
1
z

+
z

R2
) dz

∣∣∣∣∣ ≤ 1
R

by the M-L theorem. Note that this estimate of the integral along the path γ+
R is inde-

pendent of λ. Now let us consider the contribution to the integral along γR of the integral
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along γ−R . First we use the triangle inequality to obtain the estimate∣∣∣∣∣ 1
2πi

∫
γ−R

(G(z)−Gλ(z))eλz(
1
z

+
z

R2
) dz

∣∣∣∣∣
≤

∣∣∣∣∣ 1
2πi

∫
γ−R

G(z)eλz(
1
z

+
z

R2
) dz

∣∣∣∣∣ +

∣∣∣∣∣ 1
2πi

∫
γ−R

Gλ(z)eλz(
1
z

+
z

R2
) dz

∣∣∣∣∣
= |I1(R)|+ |I2(R)|.

First consider I2(R). Since Gλ(z) is an entire function, we can replace the path of inte-
gration γ−R by the semicircular path from iR to −iR in the left half plane. For z on this
semicircular arc, the modulus of the integrand in I2(R) is

|(
∫ λ

0

F (t)e−zt dt)eλz 2 Re z

R2
)| ≤ 1

|Re z|
2|Re z|

R2
=

2
R2

.

(Note that |F | ≤ 1, we can replace the upper limit of integration by ∞, and eλx ≤ 1 for
x ≤ 0.) This inequality also holds if Re z = 0 (let z → iy). Thus by the M-L theorem we
get |I2(R)| ≤ (1/2π)(2/R2)(πR) = 1/R, again.

Finally, we consider |I1(R)|. This will be the trickiest of all since we only know that on
γ−R , G is an analytic extension of the explicitly defined G in the right half plane. To deal
with this case, first choose a constant M(R) > 0 such that |G(z)| ≤ M(R) for z ∈ γ−R .
Choose δ1 such that 0 < δ1 < δ(R) and break up the integral defining I1(R) into two
parts, corresponding to Re z < −δ1 and Re z ≥ −δ1. The first contribution is bounded in
modulus by

1
2π

M(R)e−λδ1(
1

δ(R)
+

1
R

)πR =
1
2
RM(R)(

1
δ(R)

+
1
R

)e−λδ1 ,

which for fixed R and δ1 tends to 0 as λ→∞. On the other hand, the second contribution
is bounded in modulus by

1
2π

M(R)(
1

δ(R)
+

1
R

)2R arcsin
δ1

R
,

the last factor arising from summing the lengths of two short circular arcs on the path
of integration. Thus for fixed R and δ(R) we can make the above expression as small
as we please by taking δ1 sufficiently close to 0. So at last we are ready to establish the
conclusion of this theorem. Let ε > 0 be given. Take R = 4/ε and fix δ(R), 0 < δ(R) < R,
such that G is analytic inside and on γR. Then as we saw above, for all λ,∣∣∣∣∣ 1

2πi

∫
γ+

R

(G(z)−Gλ(z))eλz(
1
z

+
z

R2
) dz

∣∣∣∣∣ ≤ 1
R

=
ε

4

and also ∣∣∣∣∣ 1
2πi

∫
γ−R

(Gλ(z)eλz(
1
z

+
z

R2
) dz

∣∣∣∣∣ ≤ 1
R

=
ε

4
.
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Now choose δ1 such that 0 < δ1 < δ(R) and such that

1
2π

M(R)(
1

δ(R)
+

1
R

)2R arcsin
δ1

R
<

ε

4
.

Since

1
2
RM(R)(

1
δ(R)

+
1
R

)e−λδ1 <
ε

4

for all λ sufficiently large, say λ ≥ λ0, it follows that

|Gλ(0)−G(0)| < ε, λ ≥ λ0

which completes the proof. ♣

Proof of (7.3.2)

Let f(x) and g(z) be as in the statement of the corollary. Define F on [0,+∞) by

F (t) = e−tf(et)− c.

Then F satisfies the first part of the hypothesis of the auxiliary Tauberian theorem, so
let us consider its Laplace transform,

G(z) =
∫ ∞

0

(e−tf(et)− c)e−zt dt,

which via the change of variables x = et becomes

G(z) =
∫ ∞

1

(
1
x

f(x)− c)x−z dx

x

=
∫ ∞

1

f(x)x−z−2 dx− c

∫ ∞
1

x−z−1 dx

=
∫ ∞

1

f(x)x−z−2 dx− c

z

=
g(z + 1)
z + 1

− c

z

=
1

z + 1
[g(z + 1)− c

z
− c].

It follows from the hypothesis that g(z + 1)− (c/z) has an analytic extension to a neigh-
borhood of the line Re z = 0, and consequently the same is true of the above function G.
Thus the hypotheses of the auxiliary Tauberian theorem are satisfied, and we conclude
that the improper integral

∫∞
0

F (t) dt exists and converges to G(0). In terms of f , this
says that

∫∞
0

(e−tf(et) − c) dt exists, or equivalently (via the change of variables x = et

once more) that ∫ ∞
1

(
f(x)

x
− c)

dx

x
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exists. Recalling that f is nondecreasing, we can infer that f(x)/x → c as x → ∞. For
let ε > 0 be given, and suppose that for some x0 > 0, [f(x0)/x0]− c ≥ 2ε. It follows that

f(x) ≥ f(x0) ≥ x0(c + 2ε) ≥ x(c + ε) for x0 ≤ x ≤ c + 2ε

c + ε
x0.

Hence,

∫ c+2ε
c+ε x0

x0

(
f(x)

x
− c)

dx

x
≥

∫ c+2ε
c+ε x0

x0

ε

x
dx = ε ln(

c + 2ε

c + ε
).

But
∫ x2

x1
( f(x)

x − c)dx
x → 0 as x1, x2 →∞, because the integral from 1 to ∞ is convergent.

Thus for all x0 sufficiently large,

∫ c+2ε
c+ε x0

x0

(
f(x)

x
− c)

dx

x
< ε ln(

c + 2ε

c + ε
).

However, reasoning from the assumption that [f(x0)/x0]−c ≥ 2ε, we have just deduced the
opposite inequality. We must conclude that for all x0 sufficiently large, [f(x0)/x0]−c < 2ε.
Similarly, [f(x0)/x0] − c > −2ε for all x0 sufficiently large. [Say [f(x0)/x0] − c ≤ −2ε.
The key inequality now becomes

f(x) ≤ f(x0) ≤ x0(c− 2ε) ≤ x(c− ε) for (
c− 2ε

c− ε
)x0 ≤ x ≤ x0

and the limits of integration in the next step are from c−2ε
c−ε x0 to x0.] Therefore f(x)/x→ c

as x→∞, completing the proof of both the corollary and the prime number theorem. ♣
The prime number theorem has a long and interesting history. We have mentioned

just a few of the many historical issues related to the PNT in this chapter. There are
several other number theoretic functions related to π(x), in addition to the function ψ(x)
that was introduced earlier. A nice discussion of some of these issues can be found in Eric
W. Weisstein, “Prime Number Theorem”, from MathWorld—A Wolfram Web Resource,
http://mathworld.wolfram.com/PrimeNumberTheorem.html. This source also includes a
number of references on PNT related matters.
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