Análisis Complejo

Práctica N°3.

- 1. Estudiar la convergencia de la serie cuyo término general es el siguiente:

- (i) $a_n = \frac{n+1}{2n+1}$, (ii) $a_n = \frac{n}{2n^2+3}$, (iii) $a_n = \frac{1}{\sqrt{n+5}}$, (iv) $a_n = \log(1 + \frac{1}{n})$, (v) $a_n = \sec(\frac{1}{n^2})$.
- 2. Demostrar que la serie de término general $a_n = \frac{1}{n^p \log(n)^q}, n \ge 2$,
 - (a) converge si q > 0 y p > 1, (b) converge si q > 1 y p = 1,

 - (c) diverge si q > 0 si p < 1, (d) diverge si $0 < q \le 1$ y p = 1.
- 3. Hallar el radio de convergencia de las siguientes series de potencia:
 - (i) $\sum_{n=1}^{\infty} \frac{1}{(n+1)^3 4^n} z^n$, (ii) $\sum_{n=1}^{\infty} \frac{(1+2i)^n}{n^n} z^n$, (iii) $\sum_{n=1}^{\infty} (\frac{1}{2})^{n^2} z^n$,

- (iv) $\sum_{n=1}^{\infty} 4^{n^2} z^n$, (v) $\sum_{n=1}^{\infty} \frac{1}{2^n} z^{n^2}$, (vi) $\sum_{n=1}^{\infty} \frac{n!}{n^n} z^n$.
- 4. Criterio de Weierstrass. Sea X un espacio métrico y para cada $n \in \mathbb{N}$ sea $u_n: X \to \mathbb{C}$ una función tal que $|u_n(x)| \leq M_n$ para todo $x \in X$. Demostrar que

$$\sum_{n=1}^{\infty} M_n \text{ converge } \Longrightarrow \sum_{n=1}^{\infty} u_n(x) \text{ converge uniformemente en } X.$$

5. Sean $(a_n)_{n\geq 0}$, $(Z_n)_{n\geq 0}$ sucesiones de números complejos tales que $(a_nZ_n)_{n\geq 0}$ converge. Demostrar que

$$\sum_{n=0}^{\infty} (a_n - a_{n+1}) Z_n \text{ converge } \iff \sum_{n=1}^{\infty} a_n (Z_n - Z_{n-1}) \text{ converge.}$$

- 6. Sean $(a_n)_{n\geq 1}$ y $(z_n)_{n\geq 1}$ sucesiones de números complejos.
 - (a) Criterio de Dedekind. Demostrar que si $\lim a_n = 0$, $\sum_{n=1}^{\infty} (a_n a_{n+1})$ converge absolutamente y las sumas parciales de $\sum_{n=1}^{\infty} z_n$ están acotadas (es decir, existe $M \in \mathbb{R}$ tal que $\left|\sum_{n=1}^{k} z_n\right| \leq M$ para todo $k \in \mathbb{N}$) entonces $\sum_{n=1}^{\infty} a_n z_n$ converge.
 - (b) Criterio de Bois-Reymond. Demostrar que si $\sum_{n=1}^{\infty} (a_n a_{n+1})$ converge absolutamente y $\sum_{n=1}^{\infty} z_n$ converge, entonces $\sum_{n=1}^{\infty} a_n z_n$ converge.

(Sugerencia: usar el ejercicio anterior.)

7. Criterio de Dirichlet. Sea $(r_n)_{n\geq 1}$ una sucesión decreciente de números reales positivos tal que $\lim r_n = 0$ y $(z_n)_{n \ge 1}$ una sucesion de números complejos. Demostrar que si las sumas parciales de $\sum_{n=1}^{\infty} z_n$ están acotadas, entonces la serie $\sum_{n=1}^{\infty} r_n z_n$ converge. (Sugerencia: usar el criterio de Dedekind.)

8. Hallar el radio de convergencia de las siguientes series y estudiar el comportamiento en el borde del disco de convergencia:

(i)
$$\sum_{n=1}^{\infty} \frac{1}{n} z^n,$$

(ii)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+2}} z^n,$$

(iii)
$$\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n+1}} z^n,$$

(iv)
$$\sum_{n=1}^{\infty} \frac{4^n}{5^n} z^n,$$

$$(v) \qquad \sum_{n=1}^{\infty} \frac{1}{(n+2)^n} z^n,$$

(vi)
$$\sum_{n=1}^{\infty} \frac{n!}{(2-i)n^2} z^n$$
,

(i)
$$\sum_{n=1}^{\infty} \frac{1}{n} z^n$$
, (ii) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+2}} z^n$, (iii) $\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n+1}} z^n$, (iv) $\sum_{n=1}^{\infty} \frac{4^n}{5^n} z^n$, (v) $\sum_{n=1}^{\infty} \frac{1}{(n+2)^n} z^n$, (vi) $\sum_{n=1}^{\infty} \frac{n!}{(2-i)n^2} z^n$, (vii) $\sum_{n=1}^{\infty} \frac{1}{1+(1+i)^n} z^n$, (viii) $\sum_{n=1}^{\infty} n! z^n^2$, (ix) $\sum_{n=1}^{\infty} z^n!$,

(viii)
$$\sum_{n=1}^{\infty} n! z^{n^2}$$

(ix)
$$\sum_{n=1}^{\infty} z^{n!}$$

(x)
$$\sum_{n=1}^{\infty} \operatorname{sen} n \, z^n$$
,

(x)
$$\sum_{n=1}^{\infty} \text{sen } n \ z^n$$
, (xi) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} z^{n(n+1)}$.

9. Hallar los valores de z para los cuales las siguientes series resultan convergentes:

(i)
$$\sum_{n=1}^{\infty} \frac{(z+i)^n}{(n+1)(n+2)}$$
,

(ii)
$$\sum_{n=1}^{\infty} \frac{1}{n+|z|},$$

(iii)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n+|z|},$$

(iv)
$$\sum_{n=1}^{\infty} \frac{n^2 z^{2n}}{7^n},$$

$$(v) \qquad \sum_{n=1}^{\infty} \frac{3^n}{n z^n},$$

(vi)
$$\sum_{n=1}^{\infty} \frac{e^{nz}}{n^2}$$

(vii)
$$\sum_{n=1}^{\infty} \frac{e^{inz}}{n+1}$$

(viii)
$$\sum_{n=1}^{\infty} \frac{1}{n^2} \left(\frac{z+1}{z-1} \right)^n$$

(i)
$$\sum_{n=1}^{\infty} \frac{(z+i)^n}{(n+1)(n+2)}$$
, (ii) $\sum_{n=1}^{\infty} \frac{1}{n+|z|}$, (iii) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n+|z|}$, (iv) $\sum_{n=1}^{\infty} \frac{n^2 z^{2n}}{7^n}$, (v) $\sum_{n=1}^{\infty} \frac{3^n}{nz^n}$, (vi) $\sum_{n=1}^{\infty} \frac{e^{nz}}{n^2}$, (vii) $\sum_{n=1}^{\infty} \frac{e^{inz}}{n+1}$, (viii) $\sum_{n=1}^{\infty} \frac{1}{n^2} \left(\frac{z+1}{z-1}\right)^n$, (ix) $\sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{z-\alpha}{1-\overline{\alpha}z}\right)^n$, $|\alpha| < 1$.

- 10. Para $m \in \mathbb{N}$ fijo, probar que los conjuntos de convergencia de las series $\sum_{n=1}^{\infty} a_n z^n$ y $\sum_{n=1}^{\infty} a_{m+n} z^n$ son iguales.
- 11. Probar que si el radio de convergencia de $\sum_{n=0}^{\infty} a_n z^n$ es $\rho > 0$, entonces el de $\sum_{n=0}^{\infty} a_n n^k z^n$ es también ρ para todo $k \in \mathbb{N}$.
- 12. Hallar los términos de orden ≤ 3 en el desarrollo en serie de potencias de las siguientes funciones:

(i)
$$e^z \operatorname{sen} z$$
,

(ii)
$$\sin z \cos z$$
,

(iii)
$$\frac{e^z-1}{z}$$

(i)
$$e^z \operatorname{sen} z$$
, (ii) $\operatorname{sen} z \cos z$, (iii) $\frac{e^z - 1}{z}$, (iv) $\frac{e^z - \cos z}{z}$, (v) $\frac{1}{\cos z}$, (vi) $\frac{\operatorname{sen} z}{\cos z}$.

$$(v) \quad \frac{1}{\cos z},$$

(vi)
$$\frac{\operatorname{sen} z}{\cos z}$$
.

- 13. Para $n \in \mathbb{N}$, hallar el desarrollo en serie de potencias de la funcion $f_n(z) = \frac{1}{(1+z)^n}$. (Sugerencia: $f_n = \frac{(-1)^{n-1}}{(n-1)!} f_1^{(n-1)}$.)
- 14. Sea $f(z) = \sum_n a_n z^n$ una serie de potencias con radio de convergencia $\rho > 0$. Se dice que f(z) es par (impar) si $a_n = 0$ para todo n impar (par). Mostrar que
 - f es par sii f(-z) = f(z) para todo z con $|z| < \rho$,
 - f es impar sii f(-z) = -f(z) para todo z con $|z| < \rho$.
- 15. La sucesión de Fibonacci se define recursivamente por $a_0 = 0$, $a_1 = 1$ y $a_n = 0$ $a_{n-1} + a_{n-2}$ para $n \ge 2$.
 - (a) Probar que $R(z) = \sum_{n=0}^{\infty} a_n z^n$ converge en un entorno del origen, y la función R(z) es una función racional. Hallar una fórmula explícita para R(z).
 - (b) Descomponiendo R(z) en fracciones simples y usando la suma de la serie geométrica, obtener un nuevo desarrollo de R(z) en serie de potencias.
 - (c) Comparar ambos desarrollos y obtener una fórmula cerrada para el n-ésimo término de la sucesión de Fibonacci.

Funcion logartimo y raíces n-ésimas

- 16. Si $\Omega \subset \mathbb{C}^*$ es abierto, llamamos rama del logaritmo de z en Ω a toda función continua $g: \Omega \to \mathbb{C}$ tal que $e^{g(z)} = z$ para todo $z \in \Omega$.
 - (a) Demostrar que toda rama del logaritmo es inyectiva y holomorfa en Ω .
 - (b) Sean g_1, g_2 dos ramas de logaritmo en Ω . Demostrar que si Ω es conexo y existe $z_0 \in \Omega$ tal que $g_1(z_0) = g_2(z_0)$, entonces $g_1(z) = g_2(z) \forall z \in \Omega$.
 - (c) Demostrar que si existe una rama del logaritmo en Ω , entonces $S^1 \nsubseteq \Omega$.
- 17. Sean $g:\Omega\to\mathbb{C}$ una rama del logaritmo, $b\in\mathbb{C},\,a\in\Omega.$ Definimos $a^b=e^{b\cdot g(a)}.$
 - (a) Verificar que si $b \in \mathbb{Z}$, a^b no depende de la elección de g y coincide con $\underbrace{a \cdots a}_{b \text{ veces}}$.
 - (b) Calcular todos los valores que pueden tomar i^i , $(-1)^{\frac{3}{5}}$ y 1^{π} al considerar todos las posibles elecciones del logaritmo.
 - (c) Fijando una rama del logaritmo, mostrar que las funciones $h_1: \Omega \to \mathbb{C}, \ h_1(z) = z^b \ y \ h_2: \mathbb{C} \to \mathbb{C}, \ h_2(z) = a^z$ son funciones holomorfas.
 - (d) Sean $z \in \Omega$, $a, b \in \mathbb{C}$ tales que $z^a \in \Omega$. ¿Qué relación hay entre z^{a+b} y $z^a z^b$? ¿Qué relación hay entre z^{ab} y $(z^a)^b$? ¿Y si se sabe que $b \in \mathbb{Z}$?
- 18. Sea log la rama principal del logaritmo definida en $\mathbb{C} \setminus \mathbb{R}_{\leq 0}$. Probar que para todo $t \in \mathbb{R}$,

$$\operatorname{arctg}(t) = \frac{1}{2i} \log \left(\frac{i-t}{i+t} \right).$$

- 19. Sea $n \in \mathbb{N}$. Si $\Omega \subset \mathbb{C}^*$ es abierto, llamamos rama de la raíz n-ésima de z en Ω a toda función continua $g:\Omega \to \mathbb{C}$ tal que $g(z)^n=z$ para todo $z \in \Omega$. En tal caso, notaremos $\sqrt[n]{z}$ a g(z).
 - (a) Probar que si $\Omega = \mathbb{C} \setminus \mathbb{R}_{\geq 0}$, hay exactamente dos ramas de \sqrt{z} en Ω . Definirlas.
 - (b) Probar que toda rama de \sqrt{z} es holomorfa.
 - (c) Si Ω es conexo y f es una rama de \sqrt{z} en Ω , entonces f y -f son todas las ramas.
- 20. Sea $\Omega = \mathbb{C} \setminus \mathbb{R}_{\leq 0}$. Sea g(z) una rama del logaritmo definida en Ω y sea $\sqrt[3]{z}$ la rama de la función raíz cúbica definida en Ω por $\sqrt[3]{z} = e^{g(z)/3}$.
 - (a) Demostrar que para toda rama $g, \sqrt[3]{z}$ pertenece a Ω para todo z en Ω .
 - (b) Hallar todas las ramas g para las cuales $g(\sqrt[3]{z}) = \frac{1}{3}g(z)$ para todo z en Ω .
 - (c) Probar que si se cambia Ω por $\mathbb{C} \setminus \mathbb{R}_{\geq 0}$, aumenta la cantidad de ramas que satisfacen el item (b).