Análisis Complejo

Práctica N°6.

- 1. Sea $f(z) = \frac{1}{z(z-1)(z-2)}$. Hallar el desarrollo en serie de Laurent de f en cada uno de los siguientes anillos:
 - (i) 0 < |z| < 1, (ii) 1 < |z| < 2, (iii) 2 < |z|,
- (iv) 0 < |z 1| < 1, (v) 1 < |z 1|, (vi) 1 < |z 2| < 2.
- 2. Hallar el coeficiente de z en el desarrollo de Laurent de $\frac{e^z}{z-1}$ en $\{|z|>1\}$.
- 3. Sea $\lambda \in \mathbb{C}$. Mostrar que si $0 < |z| < \infty$,

$$e^{\frac{1}{2}\lambda\left(z+\frac{1}{z}\right)} = a_0 + \sum_{n=1}^{\infty} a_n \left(z^n + \frac{1}{z^n}\right),$$

donde para $n \ge 0$, $a_n = \frac{1}{\pi} \int_0^{\pi} e^{\lambda \cos t} \cos(nt) dt$.

- 4. Determinar qué tipo de singularidad tiene cada una de las siguientes funciones f(z)en 0. Cuando sea evitable, definir f(0) de modo que f resulte holomorfa en 0. Cuando sea un polo, determinar su orden y hallar la parte singular.

- $\begin{array}{lll} \text{(i)} & f(z) = \frac{\sin z}{z}, & \text{(ii)} & f(z) = \frac{\cos z}{z}, & \text{(iii)} & f(z) = \frac{\cos z 1}{z}, \\ \text{(iv)} & f(z) = e^{\frac{1}{z}}, & \text{(v)} & f(z) = \frac{\log(z + 1)}{z}, & \text{(vi)} & f(z) = \frac{1}{z}\cos\left(\frac{1}{z}\right), \end{array}$
- (vii) $f(z) = \frac{z^2+1}{z(z+1)}$, (viii) $f(z) = \frac{1}{1-e^z}$.
- 5. ¿Es 0 una singularidad esencial de la función que define la siguiente serie de Laurent?

$$\cdots + \frac{1}{z^n} + \frac{1}{z^{n-1}} + \cdots + \frac{1}{z} + \frac{1}{2} + \frac{z}{2^2} + \cdots + \frac{z^n}{2^{n+1}} + \cdots$$

- 6. Sea f holomorfa en $\mathbb{C}\setminus\{i,2i\}$. Demostrar que si f tiene una singularidad no evitable en z = i y en z = 2i, entonces el desarrollo en serie de Laurent de f en $\{1 < |z| < 2\}$ tiene infinitos términos negativos e infinitos términos positivos no nulos.
- 7. (a) Probar que z_0 es un cero de orden k de f sii es un polo de orden k de $\frac{1}{f}$.
 - (b) Si z_0 es un cero (polo) de orden k de f y un cero (polo) de orden k de g, ¿que clase de singularidad de $\frac{f}{g}$ es z_0 ?
 - (c) Si z_0 es una singularidad esencial de f y un polo de g, decidir que tipo de singularidad tienen fg y $\frac{f}{g}$ en z_0 .
- 8. Sea z_0 una singularidad evitable, polo o singularidad esencial de la función f. Determinar en cada caso qué tipo de singularidad tiene la función e^f en z_0 .
- 9. Sea $f(z) = \frac{a_m z^m + \dots + a_1 z + a_0}{b_n z^n + \dots + b_1 z + b_0}$. De acuerdo con el grado de los polinomios, decidir que tipo de singularidad tiene f en ∞ .

10.	Clasificar las	singularidades	de las	siguientes	funciones	en $\widehat{\mathbb{C}}$	у	determinar	el	orden
	de sus polos.									

(i)
$$f(z) = \frac{e^z - 1 - z}{z^2}$$
,

(ii)
$$f(z) = \cos(z)e^{-\frac{1}{z^2}}$$
, (iii) $f(z) = \frac{1}{z^3 - 5} + ze^{\frac{1}{z}}$,

(iii)
$$f(z) = \frac{1}{z^3 - 5} + ze^{\frac{1}{z}}$$

(iv)
$$f(z) = \frac{z^5}{1+z^4}$$
,

(v)
$$f(z) = \text{sen}(\frac{1}{z^2})^{-1}$$
, (vi) $f(z) = e^{\frac{z}{1-z}}$,

(vi)
$$f(z) = e^{\frac{z}{1-z}}$$

(vii)
$$f(z) = \frac{\cos z - \sin z}{z^4 + 2z^2 + 1}$$

(viii)
$$f(z) = \frac{1}{\cos z - 1}$$
.

11. Sea f una función entera. Probar que:

- (a) f tiene una singularidad evitable en ∞ sii f es constante,
- (b) f tiene un polo de orden n en ∞ sii es f un polinomio de grado n.
- 12. Hallar todas las funciones enteras y biyectivas.
- 13. Calcular los residuos de f en cada una de sus singularidades aisladas en \mathbb{C} :

(i)
$$f(z) = \frac{1}{z^2(z+1)}$$

(ii)
$$f(z) = \frac{1}{z^3} \operatorname{sen} z$$
,

(i)
$$f(z) = \frac{1}{z^2(z+1)}$$
, (ii) $f(z) = \frac{1}{z^3} \operatorname{sen} z$, (iii) $f(z) = z^5 \cos(\frac{1}{z})$.

(a) Sea a un polo de orden m de f y sea $g(z) = (z - a)^m f(z)$, entonces

Res
$$(f, a) = \frac{1}{(m-1)!} \lim_{z \to a} g^{(m-1)}(z).$$

(b) Deducir que si a es un polo simple de f entonces

$$\operatorname{Res}(f, a) = \lim_{z \to a} (z - a) f(z).$$

- 15. Sea f meromorfa en un abierto Ω , g holomorfa en Ω y sea $a \in \Omega$. Probar que:
 - (a) si a es un polo simple de f, Res(fg, a) = Res(f, a)g(a);
 - (b) si a es un cero de orden m de f, a es un polo simple de $\frac{f'}{f}$ y $\operatorname{Res}(\frac{f'}{f},a)=m$;
 - (c) si a es un polo de orden m de f, a es un polo simple de $\frac{f'}{f}$ y $\operatorname{Res}(\frac{f'}{f}, a) = -m$;
 - (d) si a es un cero de orden m de f, a es un polo simple de $\frac{f'g}{f}$ y $\operatorname{Res}(\frac{f'g}{f},a) = mg(a)$.
- 16. Calcular los siguientes residuos:

(i)
$$\frac{e^z}{(z-1)z}$$
 en $z = 0, 1,$ (ii) $\frac{\cos z - 1}{\sin z - z}$ en $z = 0,$ (iii) $\frac{z^4 e^z}{1 + e^z}$ en $z = \pi i$.

(ii)
$$\frac{\cos z - 1}{\sin z - z}$$
 en $z = 0$,

(iii)
$$\frac{z^4 e^z}{1+e^z}$$
 en $z=\pi i$

17. Sea C la circunferencia $\{|z|=2\}$ recorrida en el sentido positivo. Calcular

(i)
$$\int_C \frac{z}{z^4+1} dz,$$

(ii)
$$\int_C \frac{1+\sin z}{\sin z} dz$$

(ii)
$$\int_C \frac{1+\sin z}{\sin z} dz$$
, (iii) $\int_C \frac{dz}{(z+1)^2(z^2-9)}$.

18. Sea f entera y γ una curva como en la figura

Si $\int_{\gamma} z \frac{f'(z)}{f(z)} dz = 0$, probar que f no se anula en el interior de γ .

- 19. Sea γ el rectángulo de vértices 0, 1, 1+3i y 3i recorrido en sentido positivo, y sea f meromorfa en $\mathbb C$ tal que f(z+3i)=f(z) y f(z+1)=f(z) para todo $z\in\mathbb C$. Probar que si f no tiene polos ni ceros sobre γ , la cantidad de ceros de f en el interior de γ es igual a la cantidad de polos de f en el interior de γ (contados con multiplicidad).
- 20. Probar que el polinomio $p(z) = 2z^5 + 7z 1$ tiene una raíz real positiva de módulo menor que 1 y que el resto de las raíces están en $\{1 < |z| < 2\}$.
- 21. Probar que el polinomio $p(z)=z^5+15z+1=0$ tiene una única raíz en $\{|z|<\frac{3}{2}\}$ y decidir si tiene alguna raíz en $\{|z|\geq 2\}$.
- 22. Sea $\alpha \in \mathbb{R}, \alpha > 1$. Probar que la ecuación $z^n e^{\alpha z} = 1$ tiene exactamente n raíces en $\{|z| < 1\}$.
- 23. Calcular los residuos en ∞ de las siguientes funciones:

(i)
$$f(z) = \frac{z^2}{(z-1)(z-2)}$$
, (ii) $f(z) = \frac{e^{\frac{1}{z}}}{(1+z)z}$.

24. Sea C la circunferencia $\{|z|=2\}$ recorrida en el sentido positivo. Calcular

(i)
$$\int_C \frac{z^2 + 3z - 1}{z^4 - 2}$$
, (ii) $\int_C \frac{e^{z + \frac{1}{z}}}{1 - z^2}$.

- 25. Sea $\Omega = \mathbb{C} \setminus [-1,1]$. Se define en Ω la función $f(z) = \log\left(\frac{z+1}{z-1}\right)$, tomando la rama del logaritmo definida en $\mathbb{C} \setminus \mathbb{R}_{\leq 0}$ tal que $\log(r) \in \mathbb{R}$ para todo $r \in \mathbb{R}_{>0}$. Calcular $\int_C f(z) dz$ siendo C la circunferencia $\{|z| = 2\}$ recorrida en sentido positivo.
- 26. Sea f holomorfa alrededor de z_0 . Probar que f es inyectiva en algún entorno de z_0 si y solo si $f'(z_0) \neq 0$.
- 27. Sea f holomorfa e inyectiva en la bola de centro a y radio R, B(a,R). Sea 0 < r < R y sea γ el borde de la bola de centro a y radio r. Probar que para todo $w \in f(B(a,r))$,

$$f^{-1}(w) = \frac{1}{2\pi i} \int_{\gamma} \frac{zf'(z)}{f(z) - w} dz.$$

28. Sea f holomorfa y no constante en $\Delta = \{|z| < r\}$ tal que f(0) = 0. Probar que existe un entorno Ω de 0 contenido en Δ y $g: \Omega \to \mathbb{C}$ holomorfa e inyectiva tal que $g(\Omega) = \{|z| < s\}$ para algún s y $f(z) = g(z)^{\text{mult}(f,0)}$ para todo $z \in \Omega$.

Cálculo de integrales reales mediante el Teorema de los Residuos

- 29. Para 0 < a < 1 calcular $\int_{-\infty}^{+\infty} \frac{e^{ax}}{1 + e^x} dx$ integrando en el siguiente rectángulo de altura $2\pi i$:
- 30. (a) Sea $Q:\mathbb{C}\to\widehat{\mathbb{C}}$ una función racional sin polos reales. Si $\lim_{|z|\to\infty}zQ(z)=0$, probar que $\int_{-\infty}^\infty Q(x)dx=2\pi i\sum_{\mathrm{Im}(z_i)>0}\mathrm{Res}(Q(z),z_i).$
 - (b) Calcular
 - (i) $\int_{-\infty}^{\infty} \frac{1}{x^4 + 1} dx$, (ii) $\int_{-\infty}^{\infty} \frac{x^2}{x^4 + 1} dx$, (iii) $\int_{0}^{\infty} \frac{x^2}{x^4 + 2x^2 + 1} dx$.
- 31. (a) Sea $Q:\mathbb{C}\to\widehat{\mathbb{C}}$ una función racional sin polos reales. Si $\lim_{|z|\to\infty}Q(z)=0$, probar que

$$v.p. \int_{-\infty}^{\infty} Q(x)e^{ix}dx = \lim_{R \to +\infty} \int_{-R}^{R} Q(x)e^{ix}dx = 2\pi i \sum_{\operatorname{Im}(z_i) > 0} \operatorname{Res}(Q(z)e^{iz}, z_i).$$

- (b) Calcular (i) $\int_{-\infty}^{\infty} \frac{\cos x}{x^2+1} dx$, (ii) $\int_{0}^{\infty} \frac{x \operatorname{sen} x}{x^2+1} dx$.
- 32. (a) Sea $Q: \mathbb{C} \to \widehat{\mathbb{C}}$ una función racional sin polos reales, excepto en el origen, donde tiene un polo simple. Si $\lim_{|z| \to \infty} Q(z) = 0$, probar que

$$\lim_{\substack{R \to +\infty, r \to 0 \\ r > 0}} \left(\int_{-R}^{-r} Q(x)e^{ix}dx + \int_{r}^{R} Q(x)e^{ix}dx \right) =$$

$$= 2\pi i \sum_{\operatorname{Im}(z_i) > 0} \operatorname{Res}(Q(z)e^{iz}, z_i) + \pi i \operatorname{Res}(Q(z)e^{iz}, 0).$$

(Sugerencia: integrar sobre curvas del siguiente tipo, con $R \to +\infty$ y $r \to 0.)$

(b) Probar que

$$\lim_{\substack{r \to 0 \\ r > 0}} \left(\int_{-\infty}^{-r} \frac{e^{ix}}{x} dx + \int_{r}^{\infty} \frac{e^{ix}}{x} dx \right) = \pi i$$

y deducir que

$$\int_0^\infty \frac{\sin x}{x} dx = \frac{\pi}{2}.$$

33. Para $a \in \mathbb{R}$, $a \neq 0$, probar que la integral $\int_0^\infty \frac{\ln x}{x^2 + a^2} dx$ converge y calcularla. (Sugerencia: integrar sobre curvas como en el ejercicio anterior.)

(a) Sea $Q:\mathbb{C}\to\widehat{\mathbb{C}}$ una función racional sin polos en $[0,+\infty)$ y sea $\alpha\in(0,1)$. Si $\lim_{z \to \infty} Q(z) = 0$, probar que

$$(1 - e^{-2\pi i\alpha}) \int_0^{+\infty} \frac{Q(x)}{x^{\alpha}} dx = 2\pi i \sum_{z_i} \text{Res}\left(\frac{Q(z)}{z^{\alpha}}, z_i\right),$$

donde la rama elegida de z^{α} es la obtenida tomando el argumento de z en $(0,2\pi)$. (Sugerencia: integrar sobre curvas del siguiente tipo, con $R\to +\infty$, $r \to 0 \text{ y } \varepsilon \to 0.$

(b) Calcular

(i)
$$\int_0^\infty \frac{1}{\sqrt{x}(x^2+1)} dx,$$

(i)
$$\int_0^\infty \frac{1}{\sqrt{x(x^2+1)}} dx$$
, (ii) $\int_0^{+\infty} \frac{1}{x^{\alpha}(1+x)} dx$, (iii) $\int_0^\infty \frac{\sqrt[5]{x}}{x^3+x} dx$.

(iii)
$$\int_0^\infty \frac{\sqrt[5]{x}}{x^3 + x} dx.$$

35. (a) Sea $Q:\mathbb{C}^2 \to \widehat{\mathbb{C}}$ una función racional tal que el denominador no se anula sobre la circunferencia de centro 0 y radio 1. Sea $R:\mathbb{C}\to\widehat{\mathbb{C}}$ definida por

$$R(z) = \frac{1}{z}Q\left(\frac{z + \frac{1}{z}}{2}, \frac{z - \frac{1}{z}}{2i}\right).$$

Probar que

$$\int_0^{2\pi} Q(\cos x, \sin x) dx = 2\pi \sum_{|z_i| < 1} \operatorname{Res}(R(z), z_i).$$

(Sugerencia: integrar sobre $\{|z|=1\}$, parametrizada por $z=e^{ix}, 0\leq x\leq 2\pi$.)

(b) Sean $a, b \in \mathbb{R}$. Calcular

(i)
$$\int_0^{2\pi} \frac{1}{a + \sin x} dx$$
 (|a| > 1),

(i)
$$\int_0^{2\pi} \frac{1}{a + \text{sen}x} dx$$
 ($|a| > 1$), (ii) $\int_0^{2\pi} \frac{1}{(a + b \cos x)^2} dx$ ($0 < b < a$),

(iii)
$$\int_0^{\pi} \frac{\cos(2x)}{1 - 2a\cos x + a^2} dx$$
 ($|a| < 1$).