COMPARACIÓN DE LOTES MEDIANTE BOXPLOTS

EJEMPLO: LAS CIUDADES MÁS POBLADAS EN 16 PAÍSES

El World Almanac de 1967 lista 16 países que tienen 10 o más ciudades grandes; entre estas se han elegido las 10 más pobladas.

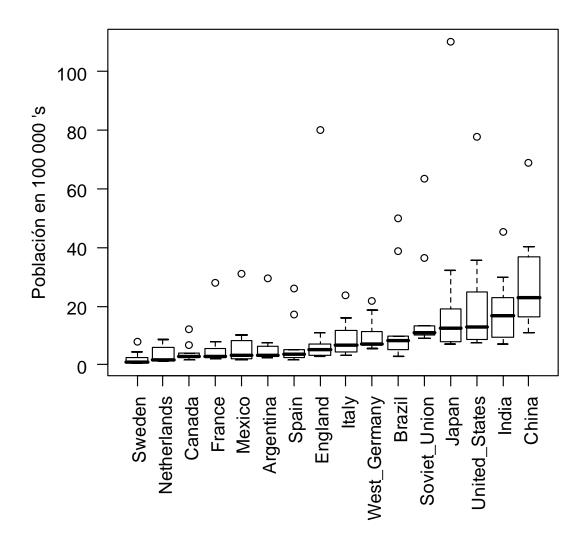
- El conjunto de datos da lugar a muchas preguntas respecto de las ciudades en estas 16 naciones.
- Cómo se comparan las medianas a través de las naciones?
- Son las menores ciudades más grandes de China mayores que las más grandes ciudades de algunos de los otros países?
- Tienen los países con ciudades más grandes una tendencia a tener mayor variabilidad entre las poblaciones?
- Cuánta asimetría tienen los diferentes conjuntos de datos?

(1) Sweden		(2) Netherla	ınds	(3) Canada		(4) France	
Stockholm	7.87	Amsterdam	8.68	Montreal	11.91	Paris	28.11
Goteborg	4.22	Rotterdam	7.31	Toronto	6.72	Marseilles	7.83
Malmo	2.49	The Hague	6.02	Vancouver	3.84	Lyon	5.35
Norrkoping	0.94	Utrecht	2.64	Edmonton	2.81	Toulouse	3.30
Vasteras	0.89	Eindhoven	1.75	Hamilton	2.73	Nice	2.94
Uppsala	0.87	Haarlem	1.72	Ottawa	2.68	Bordeaux	2.54
Orebro	0.81	Groningen	1.51	Winnipeg	2.65	Nantes	2.46
Halsingborg	90.78	Tilburg	1.42	Calgary	2.49	Strasbourg	2.33
Linkoping	0.71	Enschede	1.31	Quebec	1.71	St. Etienne	2.03
Boras	0.69	Arnhem	1.29	London	1.69	Lille	1.99

(5) Mexico		(6) Argentina		(7) Spain		(8) England	
MexicoCity	31.18	BuenosAires	29.66	Madrid	25.99	London	79.86
Guadalajara	10.12	Rosario	7.61	Barcelona	16.96	Birmingham	
Monterrey	8.06	Cordoba	6.35	Valencia	5.01	11.02	
Juarez	3.79	La Plata	4.10	Seville	4.74	Liverpool	7.22
Puebla	3.46	Avellaneda	3.80	Zaragoza	3.57	Manchester	6.38
Mexicali	2.91	Santa Fe	2.75	Bilboa	3.34	Leeds	5.09
Leon	2.71	Mar del Plata	2.70	Malaga	3.12	Sheffield	4.88
Torreon	2.17	Gral.SanMarti	n 2.69	Murcia	2.64	Bristol	4.30
Chihuahua	2.06	Tucuman	2.51	Cordoba	2.14	Coventry	3.30
SanLuisPoto	osi	Lanus	2.44	Palma	1.69	Nottingham	3.10
1.86						Kingston	2.99

(9) Italy		(10) West Ge	rmany	(11) Brazil		(12) Soviet	Union
Rome	23.59	WestBerlin		Sao Paulo	49.81	Moscow	63.34
Milan	15.80	21.92		RiodeJaneiro	38.57	Leningrad	36.36
Naples	11.82	Hamburg		Recife	9.68	Kiev	13.32
Turin	11.14	18.56		BeloHorizont	e 9.52	Baku	11.37
Genoa	7.84	Munich	11.42	Salvador	8.08	Tashkent	10.90
Palermo	5.90	Cologne	8.27	Porto Alegre	8.03	Gorky	10.84
Florence	4.54	Essen	7.28	Fortaleza	6.99	Kharkov	10.70
Bologna	4.44	Dusseldorf	7.02	Curitiba	5.02	Novosibirsk	10.27
Catania	3.61	Frankfurt	6.94	Belem	4.95	Kuibyshev	9.50
Venice	3.36	Dortmund	6.53	Niterol	2.78	Sverdlovsk	9.17
		Bremen	5.84				
		Hannover	5.66				

(13) Japan	1	(14) United Sta	tes	(15) India		(16) China	
Tokyo	110.21	NewYork	77.81	Bombay	45.37	Shangai	69.00
Osaka	32.14	Chicago	35.50	Calcutta	30.03	Beijing	40.10
Nagoya	18.88	LosAngeles	24.79	Delhi	22.98	Hong Kong	36.92
Yokoham	a 16.39	Philadelphia	20.02	Hyderabad	20.62	Tianjin	32.20
Kyoto	13.37	Detroit	16.70	Madras	17.25	Shenyang	24.11
Kobe	11.95	Baltimore	9.39	Howrah	16.11	Wuhan	21.46
KitaKyus	h	Houston	9.38	Ahmedabad	11.49	Chongqing	21.21
10.70		Cleveland	8.76	Kanpur	9.47	Canton	16.50
Kawasaki	7.89	Washington,DO	7.63	Bangalore	9.07	Xian	15.00
Fukuoka	7.71	St. Louis	7.50	Poona	7.21	Nanjing	11.13
Sapporo	7.04						


Tabla 12: medidas resumen de las poblaciones de 10 ciudades mayores de 16 países

SWEDEN	NETHERLAND	CANADA	FRANCE
	S		
Min. :0.6900	Min. :1.290	Min. : 1.690	Min. : 1.990
1st Qu.:0.7875	1st Qu.:1.442	1st Qu.: 2.530	1st Qu.: 2.362
Median :0.8800	Median :1.735	Median : 2.705	Median : 2.740
Mean :2.0270	Mean :3.365	Mean : 3.923	Mean : 5.888
3rd Qu.:2.1020	3rd Qu.:5.175	3rd Qu.: 3.582	3rd Qu.: 4.837
Max. :7.8700	Max. :8.680	Max. :11.910	Max. :28.110
MEXICO	ARGENTINA	SPAIN	ENGLAND
Min. : 1.860	Min. : 2.440	Min. : 1.690	Min. : 2.990
1st Qu.: 2.305	1st Qu.: 2.692	1st Qu.: 2.760	1st Qu.: 3.550
Median : 3.185	Median : 3.275	Median : 3.455	Median : 4.985
Mean : 6.832	Mean : 6.461	Mean : 6.920	Mean :12.810
3rd Qu.: 6.992	3rd Qu.: 5.788	3rd Qu.: 4.942	3rd Qu.: 7.010
Max. :31.180	Max. :29.660	Max. :25.990	Max. :79.860
ITALY	WGERMANY	BRAZIL	URSS
Min. : 3.360 1st	Min. :5.660	Min. : 2.780	Min. : 9.17
Qu.: 4.465	1st Qu.:6.632	1st Qu.: 5.512	1st Qu.:10.38
Median : 6.870	Median :7.150	Median : 8.055	Median :10.87
Mean : 9.204	Mean :9.944	Mean :14.340	Mean :18.58
3rd Qu.:11.650	3rd Qu.:10.630	3rd Qu.: 9.640	3rd Qu.:12.83
Max. :23.590	Max. :21.920	Max. :49.810	Max. :63.34
JAPAN	USA	INDIA	CHINA
Min.: 7.040	Min. : 7.500	Min. : 7.210	Min. :11.13
1st Qu.: 8.592	1st Qu.: 8.915	1st Qu.: 9.975	1st Qu.:17.68
Median: 12.660	Median :13.040	Median :16.680	Median :22.78
Mean : 23.630	Mean :21.750	Mean :18.960	Mean :28.76
3rd Qu.: 18.260	3rd Qu.:23.600	3rd Qu.:22.390	3rd Qu.:35.74
Max. :110.200	Max. :77.810	Max. :45.370	Max. :69.00

Las respuestas a las preguntas planteadas pueden obtenerse a partir las medidas resumen dadas en la tabla 12

En la práctica, un gráfico con los boxplots en paralelo para los 16 grupos de datos hace que las respuestas a estas y otras preguntas similares aparezcan rápidamente. La figura 12 muestra este gráfico con los boxplots paralelos a si mismos y al eje de la población, ordenados de acuerdo a la mediana de las poblaciones de las 10 ciudades más grandes.

FIGURA 12

 Las ciudades más grandes de China tienden a ser más grandes que las de cualquier otra nación. todas las ciudades grandes de China son más grandes que todas las ciudades grandes de Suecia (Sweden) y Holanda (Netherlands).

- Comparamos la dispersión de estos 16 lotes mediante las longitudes de las cajas. Los datos de Canadá son los menos dispersos y los de China los más.
- La mayoría de los países presentan alguna asimetría en dirección a las grandes ciudades;
- Solamente India y Brasil tienen cajas que están sesgadas hacia la izquierda, pero ambos países tienen ciudades sustancialmente mayores que las representadas por las cajas.
- La mayor ciudad de todos los países, con la excepción de Holanda, es designada como un outlier; algunos tienen más de un outlier entre las 10 ciudades más pobladas.

Hemos detectado dos anormalidades en estos datos: asimetría y outliers.

Al haber ordenado los países en base a la mediana de los lotes podemos detectar otra característica:

tendencia de aumento en la dispersión a medida que aumenta el nivel.

Esta tendencia no es compatible con el supuesto de similar variabilidad entre lotes; cuando esto ocurre el análisis se simplifica.

Veremos transformaciones de los datos que permitan lograr homogeneidad de dispersiones y reducir la dependencia de éstas con el nivel.

En R

La función **mar** da los *márgenes* de los gráficos en *pulgadas* en el siguiente orden: margen inferior, margen izquierdo, margen superior y margen derecho respectivamente.

El valor por defecto es mar=c(5,4,4,2)+0.1.

Hemos obtenido el boxplot de las poblaciones de las 10 ciudades más pobladas mediante las siguientes instrucciones.

```
> par(las=2,cex=1,mar=c(7.2,4,2,2))
> boxplot(pobl16,
    ylab= "Población en 100 000 's" )
```

Para graficar los boxplots en orden creciente de las medianas

```
> orden.med <-
sort.list(sapply(pobl16,median))
> boxplot(pobl16[orden.med])
```

En este caso

```
sapply(pobl16,median)
```

es lo mismo que

```
apply(pobl16,2, median)
```

Para graficar en orden alfabético

Vemos que el data frame no tiene a los países con sus nombres en orden alfabético

```
> names(pobl16)
                      "Netherlands"
 [1] "Sweden"
 [3] "Canada"
                      "France"
                      "Argentina"
 [5] "Mexico"
                      "England"
 [7] "Spain"
                      "West Germany"
 [9] "Italy"
[11] "Brazil"
                      "Soviet Union"
[13] "Japan"
                      "United States"
[15] "India"
                      "China"
```

Primero hallamos los índices que nos dan el orden alfabético

```
> sort.list(names(pobl16))
                            9 13 5 2 12
 [1] 6 11 3 16 8
                      4 15
                                               1
                                           7
[15] 14 10
   > orden.alfab <- sort.list(names(pobl16))</pre>
   > names(pobl16[orden.alfab])
    [1] "Argentina"
                         "Brazil"
    [3] "Canada"
                         "China"
    [5] "England"
                         "France"
    [7] "India"
                         "Italy"
                         "Mexico"
    [9] "Japan"
   [11] "Netherlands"
                         "Soviet_Union"
   [13] "Spain"
                         "Sweden"
   [15] "United States" "West Germany"
```

NIVEL VERSUS DISPERSIÓN

Nos interesa hallar una *transformación* de los datos que reduzca o elimine el crecimiento, o decrecimiento, de la dispersión con el nivel.

Los datos reexpresados serán más adecuados tanto para exploración visual coma para aplicar técnicas usuales de comparación de grupos.

Por ejemplo el análisis de varianza de un factor es más simple y más efectivo cuando hay, exacta o aproximadamente, igualdad de varianzas entre grupos.

Transformaciones de potencia

Definimos la transformación de potencia con potencia (ó exponente) p como la transformación que reemplaza x por x^p .

Para p=0 utilizamos log x en vez de x^0 .

Veremos que log x es el límite cuando p tiende a cero de $(x^p-1)/p$.

Definiremos un gráfico que nos permitirá encontrar la transformación adecuada.

Construcción de gráficos de dispersión versus nivel

Nos interesa eliminar la relación entre el nivel y la dispersión. Podemos suponer que la distancia intercuartos (cuartos! no cuartiles) es proporcional a una potencia de la mediana:

$$d_{Q} = cM^{b}, (1)$$

Ó

$$\log d_Q = k + b \log M. \tag{2}$$

Los logaritmos de las distancias intercuartos y el logaritmo de las medianas están relacionados linealmente.

El gráfico de dispersión versus nivel consiste en graficar los valores de log $d_{\mathbb{Q}}$ contra los valores de log M para todos los lotes y luego ajustar una recta al diagrama de dispersión obtenido.

Si *b* es la pendiente estimada entonces

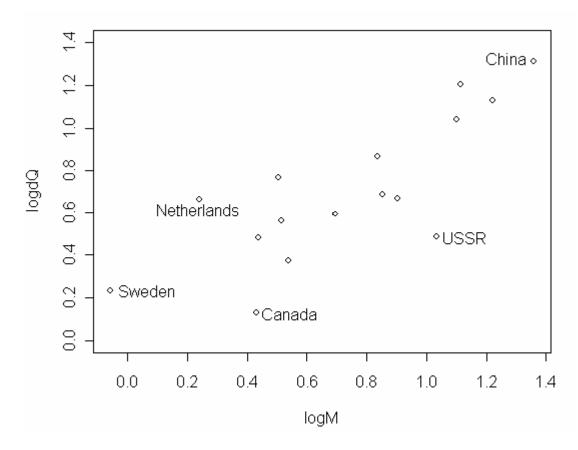
$$p = 1 - b$$

es un valor aproximado del exponente de una transformación de potencias de x para estabilizar la dispersión. Cuando p = 0 se utiliza el logaritmo.

Tabla 15:
Logs de
medianas - 5
(base 10)
y distancias
intercuartos
para las
mayores
ciudades de 16
países.

País	log	$\log d_Q$
	M	
Sweden	06	.23
Netherlands	.24	.66
Canada	.43	.13
France	.44	.48
Mexico	.50	.77
Argentina	.51	.56
Spain	.54	.38
England	.70	.59
Italy	.84	.87
West Germany	.85	.69
Brazil	.91	.67
Soviet Union	1.04	.48
Japan	1.10	1.04
United States	1.12	1.20
India	1.22	1.13
China	1.36	1.31

EJEMPLO: GRÁFICO DE DISPERSIÓN VERSUS NIVEL PARA LAS MAYORES CIUDADES


La tabla 15 muestra los logaritmos (en base 10) de las medianas y las distancias intercuartos para cada una de los 16 países.

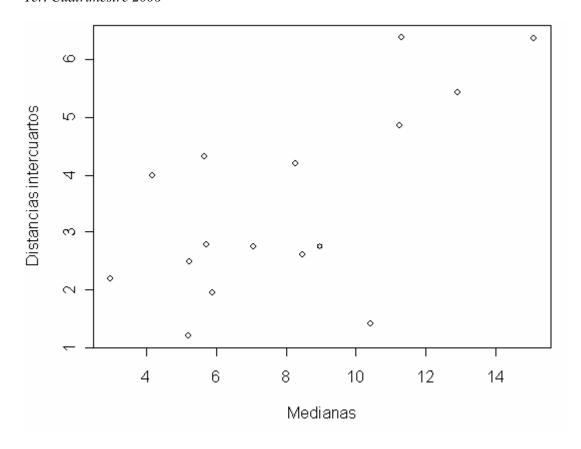
La figura 15 muestra un gráfico de log d_Q contra log M, es decir un gráfico de dispersión versus nivel, para los 16 países. El log d_Q crece a medida que crece log M: en primera aproximación la relación parece casi lineal.

Ajustamos una recta a ojo a los puntos de la figura 15. Aunque dos personas no llegarán a la misma pendiente por este método, casi seguro trazarán una recta con pendiente entre ½ y 1, y probablemente más cerca de 1 (la recta de

regresión ajustada por cuadrados mínimos tiene pendiente 0.69).

Figura 15: Gráfico de dispersión versus nivel, $\log d_Q$ contra $\log M$

Para b=1, p es cero y resulta la transformación logaritmo. Análogamente, si $b=\frac{1}{2}$ lleva a $p=\frac{1}{2}$, la transformación raíz cuadrada.

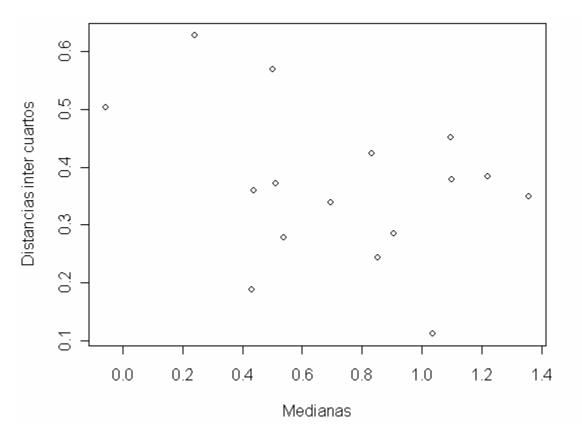

A pesar que una potencia entre 0 y ½ puede ser mejor que alguno de estos dos para estabilizar la dispersión, por razones de simplicidad y de interpretabilidad, consideraremos las transformaciones logaritmo y raíz cuadrada.

Aplicamos cada una de las transformaciones.

Tabla 16. Medianas y distancias intercuartos para los datos de las 10 ciudades mayores de 16 países transformados por logaritmo base 10 y raíz cuadrada.

	Logaritmo d	le la	Raíz cuadra	ada de la
	población		población	
País	Mediana	d_Q	Mediana	d_Q
	(más 5)		$(por 10^2)$	
Sweden	06	.51	2.97	2.19
Netherlands	.22	.62	4.17	3.98
Canada	.43	.18	5.21	1.20
France	.44	.36	5.24	2.49
Mexico	.50	.57	5.64	4.32
Argentina	.52	.37	5.72	2.78
Spain	.54	.28	5.88	2.12
England	.70	.34	7.07	2.75
Italy	.84	.42	8.29	4.21
West	.85	.24	8.46	2.61
Germany				
Brazil	.91	.29	8.98	2.75
Soviet Union	1.04	.11	10.43	1.41
Japan	1.10	.39	11.25	4.86
United States	1.12	.45	11.42	6.38
India	1.22	.38	12.92	5.42
China	1.36	.35	15.09	6.37

Figura 16. Distancia intercuartos versus mediana: datos transformados por la raíz cuadrada.



Las magnitudes relativas de las **pendientes** de los gráficos de las figuras 16 y 17 nos permiten elegir entre las dos transformaciones.

Las distancias intercuartos de los logaritmos decrecen levemente con el nivel mientras las de la raíz cuadrada aumentan con el nivel.

Deberíamos elegir el logaritmo.

Figura 17. Distancia intercuartos versus nivel: datos transformados por logaritmo.

Tomando la decisión

¿Cómo podemos tomar la decisión entre la transformación logaritmo, raíz cuadrada o alguna otra transformación de potencia con *p* entre 0 y 1?

Idealmente, una transformación no sólo iguala dispersiones sino también tiene una explicación temática.

Por ejemplo, en demografía, un modelo muy utilizado supone que las poblaciones tienden a crecer exponencialmente. Si esto es así, el logaritmo de la población crecerá aproximadamente de manera lineal.

Las ventajas del crecimiento lineal, tales como la facilidad de detectar apartamientos del ajuste y la

conveniencia en la interpolación sugieren al logaritmo como una transformación adecuada para poblaciones humanas.

También la raíz cúbica, p = 1/3 es una transformación que algunas veces tiene significado físico.

Tabla 17. Transformaciones de potencia más usadas^a

Transformación	Potencia	Pendiente del gráfico dispersión - nivel
Cúbica	3	-2
Cuadrada	2	-1
No cambio	1	0
Raíz cuadrada	1/2	1/2
Logaritmo	0	1
Inversa de la	-1/2	3/2
raíz cuadrada	-1	2
Inversa		

^aCorresponden a los miembros principales de la "escalera de potencias" de Tukey.

Para las ciudades más grandes elegimos la transformación logaritmo por que se trata de datos poblacionales. Este modelo teórico simple que favorece al logaritmo, más que una fuerte evidencia en los datos, es la base para tomar esa decisión.

Reanálisis en la escala logarítmica.

Las transformaciones de potencia son monótonas para valores positivos, luego:

los estadísticos de orden de los datos transformados serán los estadísticos de orden originales transformados

(salvo por los efectos del redondeo e interpolación).

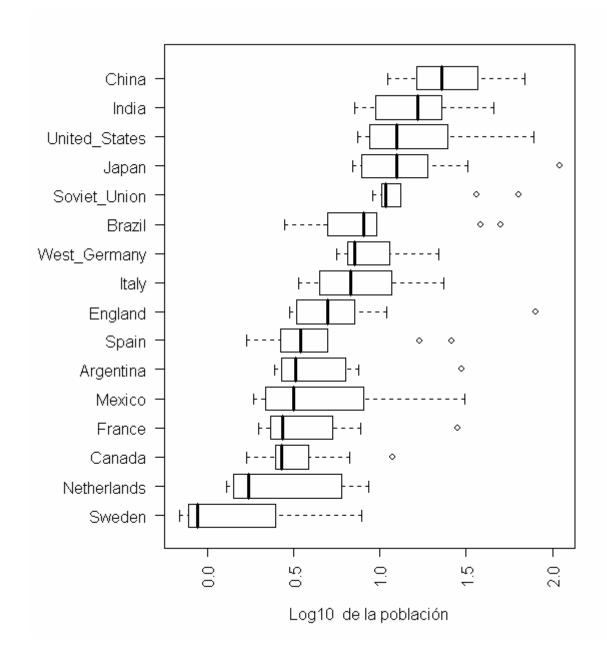
Para obtener los boxplots es necesario recalcular la distancia intercuartos y los puntos de corte para los outliers.

Puede ocurrir que algunos datos que originalmente eran outliers del lado alto dejen de serlo y aparezcan algunos del lado bajo. Esto último es poco probable cuando tomamos los 10 valores mayores.

En la figura 18 observamos que las cajas son más similares en longitud y que la desigualdad remanente no parece estar muy relacionada con el nivel (aunque quizás se hayan reducido un poco de más las dispersiones de los niveles más altos, recordemos que la pendiente de la recta ajustada era 0.7).

En la nueva escala muchos outliers han sido llevados hacia adentro. De los 19 originales, 8 ya no son outliers y los demás se han movido hacia los puntos de corte superior.

Los nuevos boxplots son más fáciles de mirar y los países están desplegados a un nivel de detalle similar.


En la escala original los valores de Suecia (Sweden), Holanda (Netherlands) y Canadá son más difíciles de leer del gráfico que los de India y China.

En los gráficos con escala logarítmica los detalles aparecen similarmente bien para todos los países.

Tabla 18: medidas resumen del logaritmo de las poblaciones de las 10 ciudades mayores de 16 países

las 10 ciudades mayores de 10 países				
SWEDEN	NETHERLANDS	CANADA	FRANCE	
		Min. :0.2279	Min. :0.2989	
1st Qu.:-0.1038		1st Qu.:0.4030	1st Qu.:0.3733	
Median :-0.0555	Median :0.2393	Median :0.4321	Median :0.4366	
Mean : 0.1270	Mean :0.4041	Mean :0.5081	Mean :0.5827	
3rd Qu.: 0.2904	3rd Qu.:0.6901	3rd Qu.:0.5504	3rd Qu.:0.6759	
Max. : 0.8960	Max. :0.9385	Max. :1.0760	Max. :1.4490	
MEXICO	ARGENTINA	SPAIN	ENGLAND	
Min. :0.2695	Min. :0.3874	Min. :0.2279	Min. :0.4757	
1st Qu.:0.3606	1st Qu.:0.4302	1st Qu.:0.4397	1st Qu.:0.5473	
Median :0.5015	Median :0.5096	Median :0.5382	Median :0.6976	
Mean :0.6340	Mean :0.6436	Mean :0.6570	Mean :0.8122	
3rd Qu.:0.8244	3rd Qu.:0.7553	3rd Qu.:0.6938	3rd Qu.:0.8451	
Max. :1.4940	Max. :1.4720	Max. :1.4150	Max. :1.9020	
ITALY	WGERMANY	BRAZIL	URSS	
Min. :0.5263	Min. :0.7528	Min. :0.4440	Min. :0.9624	
1st Qu.:0.6498	1st Qu.:0.8215	1st Qu.:0.7366	1st Qu.:1.0160	
Median :0.8326	Median :0.8542	Median :0.9061	Median :1.0360	
Mean :0.8744	Mean :0.9469	Mean :0.9744	Mean :1.1600	
3rd Qu.:1.0660	3rd Qu.:1.0230	3rd Qu.:0.9841	3rd Qu.:1.1070	
Max. :1.3730	Max. :1.3410	Max. :1.6970	Max. :1.8020	
JAPAN	USA	INDIA	CHINA	
Min. :0.8476	Min. :0.8751	Min. :0.8579	Min. :1.046	
1st Qu.:0.9302	1st Qu.:0.9499	1st Qu.:0.9973	1st Qu.:1.245	
Median :1.1020	Median :1.0980	Median :1.2220	Median :1.357	
Mean :1.1900	Mean :1.2000	Mean :1.2110	Mean :1.400	
3rd Qu.:1.2610	3rd Qu.:1.3710	3rd Qu.:1.3500	3rd Qu.:1.552	
Max. :2.0420	Max. :1.8910	Max. :1.6570	Max. :1.839	

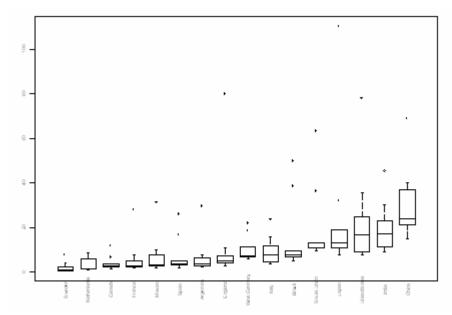
Figura 18. Boxplots de los logaritmos de las poblaciones de las 10 ciudades mayores en 16 países.

Observación: en R, cuando el argumento horizontal de la función boxplot toma el valor TRUE obtenemos boxplots horizontales al eje x.

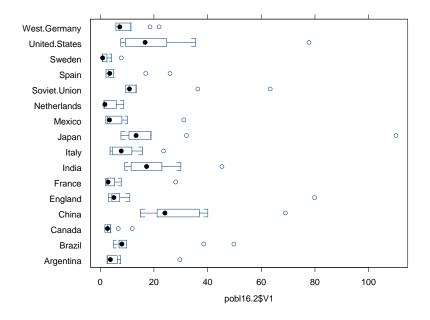
En S-plus

Cambiamos la presentación de los datos de pobl16 y los guardamos en pobl16.2

```
menuStackColumns(pobl16.2, target.col.spec="<END>", pobl16,
    source.col.spec="<ALL>", rep.source.col.spec=NULL,
    rep.target.col.spec="<END>", group.col.p=T,
    group.col.name="<END>",
    show.p=.Options$show.data.in.view)
```


Los datos aparecen en dos columnas,

🔛 S-PLUS - [pobl16.2]							
8 <u>E</u>	<u>File E</u> dit <u>V</u> iew <u>I</u> nsert F <u>o</u> rmat <u>C</u>						
	=] 🚭 🐰 🗈	🖺 KO 👱 Cz				
		豊 ≣ ⁺.0 ;.0	17				
		1	2				
		V1	V2				
1		7.87	Sweden				
2		4.22	Sweden				
3		2.49	Sweden				
4		0.94	Sweden				
5		0.89	Sweden				
6		0.87	Sweden				
7		0.81	Sweden				
8		0.78	Sweden				
9		0.71	Sweden				
10		8.68	Netherlands				
11		7.31	Netherlands				


V1: valores de la variable población,

V2: nombre del país

```
boxplot(split(pobl16.2$V1,
  pobl16.2$V2)[sort.list(sapply((split(
  pobl16.2$V1, pobl16.2$V2)), median))], srt =
  90, cex = 0.5, style.bxp = "old")
```


Usando la función bwplot obtenemos boxplots paralelos al eje horizontal bwplot(pobl16.2\$V2 ~ pobl16.2\$V1)

Mire el help. Además pruebe con plot.factor(pobl16.2\$V2,pobl16.2\$V1)