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ABSTRACT
Motivation: Recent attempts to account for multiple testing
in the analysis of microarray data have focused on controlling
the false discovery rate (FDR).However, rigorous control of the
FDR at a preselected level is often impractical. Consequently,
it has been suggested to use the q-value as an estimate of
the proportion of false discoveries among a set of signific-
ant findings. However, such an interpretation of the q-value
may be unwarranted considering that the q-value is based on
an unstable estimator of the positive FDR (pFDR). Another
method proposes estimating the FDR by modeling p-values
as arising from a beta-uniform mixture (BUM) distribution.
Unfortunately, the BUM approach is reliable only in settings
where the assumed model accurately represents the actual
distribution of p-values.
Methods: A method called the spacings LOESS histogram
(SPLOSH) is proposed for estimating the conditional FDR
(cFDR), the expected proportion of false positives conditioned
on having k ‘significant’ findings. SPLOSH is designed to be
more stable than the q-value and applicable in a wider variety
of settings than BUM.
Results: In a simulation study and data analysis example,
SPLOSH exhibits the desired characteristics relative to the
q-value and BUM.
Availability: The Web site www.stjuderesearch.org/statistics/
splosh.html has links to freely available S-plus code to imple-
ment the proposed procedure.
Contact: stanley.pounds@stjude.org

INTRODUCTION
Microarray technology is a promising development in the life
sciences that allows investigators to measure the expression
of thousands of genes simultaneously. The statistical analysis
of microarray data presents numerous challenges that must be
addressed so that the potential of this technology can be fully
realized (Tilstone, 2003). One of these challenges is assessing
the significance of findings in a meaningful way. The large
number of statistical hypothesis tests conducted in the analysis
of microarray data can potentially lead to a large number of
false discoveries, i.e. significant findings that arise solely by
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chance mechanisms. It is clear that meaningful interpretation
of microarray data strongly depends on the ability to reliably
estimate or control the occurrence of false discoveries.

An effective approach to this problem is the control of the
false discovery rate (FDR) in multiple tests introduced by
Benjamini and Hochberg (1995). They consider the random
variables V that represent the number of false discoveries
made, and the number of significant results R obtained in
a multiple-testing scenario. Benjamini and Hochberg (1995)
then define a random variable Q ≡ V /R when R > 0 and
Q = 0 when R = 0. They define the FDR as

FDR = E(Q). (1)

Benjamini and Hochberg (1995) propose a procedure that
operates on a set of p-values and proved that this procedure
controls the FDR at a pre-specified level η when the true null
hypotheses’ p-values are independent uniform (0,1) random
variables. In the proof, they show that the procedure actually
controls the FDR at a level ηg0/g, where g0 of g tested null
hypotheses are true. Subsequently, Benjamini and Hochberg
(2000) introduced an adaptive FDR-controlling procedure that
is at least as powerful as the 1995 procedure by employing an
estimate ĝ0 of g0.

Storey (2002) noted that FDR control may be infeasible in
some settings because it is difficult to pre-specify a meaning-
ful FDR-control level. Storey (2002) also suggested that the
positive FDR (pFDR)

pFDR = E

(
V

R
R > 0

)
(2)

is a more appropriate error metric than the FDR. Storey (2002)
also proposed

F̂DR(α) = π̂α

F̂ (α)
(3)

and

p̂FDR(α) = π̂α

F̂ (α)[1 − (1 − α)g] (4)

as estimators of the FDR and pFDR, respectively, when one
declares significance for all p-values less than a threshold α,
where π̂ estimates the proportion π of tested hypotheses that
are true and F(α) represents the observed proportion of tests
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yielding a p-value less than α. Storey (2002) subsequently
defined the q-value as a pFDR analog of the p-value and
proposed

q̂(i) = min
j≥i

[
p̂FDR(p(j))

]
(5)

as a q-value estimator for i = 1, 2, . . . , g, where p(1) ≤
p(2) ≤ · · · ≤ p(g) are the ordered p-values computed in the
g tests.

While the contributions discussed above represent import-
ant advances in statistical science, they do not directly address
the question ‘How many false positives can one expect among
the k most significant findings?’ Storey and Tibshirani (2003)
suggest interpreting the q-value as the expected proportion of
false positives among a set of findings. However, such an inter-
pretation of the q-value may be unwarranted since ‘the exact
operating characteristics’ of (5) have been ‘left as an open
research problem’ (Storey, 2002). In particular, the cumulat-
ive minimization operation in (5) alters the ratio interpretation
of (4).

Tsai et al. (2003) discuss the use of the conditional FDR
(cFDR), defined as

cFDR = E

(
V

R
R = r

)
= E(V |R = r)

r
. (6)

The cFDR is clearly a natural measure of the number of
false positives among the r most significant findings. Under
Storey’s (2002) mixture model, Tsai et al. (2003) show that

cFDR(α) = pFDR(α) = πα

F(α)
, (7)

where F(α) = Pr(p ≤ α). Therefore, under Storey’s (2002)
mixture model, it is natural to consider a ratio of the form

r̂(α) = π̂α

F̂ (α)
(8)

as an estimator of the proportion of false positives among the
set of findings with p ≤ α.

Storey (2002), Allison et al. (2002) and Pounds and Morris
(2003) have proposed methods to compute (8). The meth-
ods utilize different techniques to obtain F̂ (α) and π̂ . Storey
(2002) sets F̂ (α) to the observed proportion of p-values less
than α and uses a smoothing spline technique to estimate π̂ .
Pounds and Morris (2003) assume the p-values arise from a
beta-uniform mixture (BUM) model and let F̂ (α) and f̂ (α),
respectively, be the cumulative distribution function (CDF)
and probability distribution function (PDF) corresponding to
the maximum-likelihood estimates (Casella and Berger, 1990)
of the model parameters and set π̂ = minα f̂ (α) = f̂ (1).
Allison et al. (2002) consider a more flexible version of the
BUM model by allowing more than one beta component in
the mixture. The method of Pounds and Morris (2003) is guar-
anteed to yield smooth and monotone r̂(α) but the reliability
of its estimates depends on the validity of the BUM model

assumptions (i.e. the BUM model can accurately represent
the actual distribution of p-values). The method proposed by
Allison et al. (2002) is somewhat impractical due to the com-
putational demands of using the bootstrap (Efron and Gong,
1983) and is not guaranteed to produce monotone estimates.
Storey’s (2002) estimator is not restricted by such model
constraints but frequently produces a fluctuating ˆpFDR(α)

that is difficult to interpret because one would anticipate that
the FDR and pFDR should be monotonically non-decreasing
functions in α when p-values are computed in a reasonable
fashion. The cumulative minimization operation in (5) ensures
that the q-value is monotone. However, since the proper-
ties of (5) are not well established (Storey, 2002) it is quite
possible that E(q̂(α)) ≤ FDR(α) ≤ pFDR(α) in some scen-
arios. In such a scenario, the q-value would underestimate the
proportion of false discoveries among the associated set of
findings.

It may prove beneficial to obtain smooth estimates of the
cFDR before enforcing monotonicity with a minimization
operation. Smooth estimates of the cFDR will have less tend-
ency to be biased downward by such an operation than rough
estimates. A smooth estimate of the cFDR could be obtained
by using a smooth F̂ (α) in (8). This could be accomplished
by treating F̂ (α) as an estimate of the p-value CDF F(α).
Conceptually, F(α) would represent the CDF of the vari-
able obtained by randomly selecting a hypothesis from the
considered set of hypotheses and generating a realization of
the p-value for testing that hypothesis. A smooth estimate of
F(α) could be obtained by integrating an estimate of its deriv-
ative, the p-value PDF f (α). The Methods section proposes
the spacings LOESS histogram (SPLOSH) as a method that
estimates the cFDR using this type of approach. The Results
section uses an example and a simulation study to compare the
proposed method with Storey’s q-value and BUM in terms of
the ability to accurately represent the expected proportion of
false discoveries among the k most significant findings. The
Discussion section elaborates on the important insights that
SPLOSH brings to the problem of cFDR estimation.

METHODS
Suppose an analysis of the association of g genes with
the characteristic of interest results in a set of g p-values
p1, . . . , pg . Let p(1) ≤ p(2) ≤ · · · ≤ p(g) represent the
ordered p-values, and a(i) = (i −1/2)/g their adjusted ranks.
Suppose that among p1, . . . , pg there are g̃ unique p-values
p̃(1) < p̃(2) < · · · < p̃(g̃). For j = 1, . . . , g̃, let ãj be the
average of a(i) for all i such that p(i) = p̃(j), which is the aver-
age of ri for the p-values equal to p(j). Additionally, define
p̃(0) = 0 and ã(0) = 0 if p̃(1) > 0, and define p̃(g̃+1) = 1 and
ã(g̃+1) = 1 if p̃g̃ < 1. Henceforth, i will be used to index
the original p-values (or quantities computed from them),
and j will be used to index the ordered unique p-values (or
quantities computed from them, including j = 0 and j = g̃ + 1
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when defined). Let l and u, respectively, represent the lower
and upper indices j of the set p̃(j):

l =
{

0 if p(1) > 0,

1 otherwise,
(9)

and

u =
{

g̃ if p(g̃) < 1,

g̃ + 1 otherwise.
(10)

For j = l, . . . , u − 1, define

mj = p̃(j+1) + p̃(j)

2
, (11)

�j = p̃(j+1) − p̃(j), (12)

δj = ã(j+1) − ã(j)

p̃(j+1) − p̃(j)

, (13)

x̃j = arcsin

[
2 ×

(
mj − 1

2

)]
, (14)

and
ỹj = log(δj ), (15)

and for i = 1, . . . , G, define

xi = arcsin

[
2 ×

(
pi − 1

2

)]
. (16)

Note that mj is the midpoint of the interval [p̃(j), p̃(j+1)], and
δj is the slope of the empirical distribution function (Mason
et al., 1989) over the same interval. Hence, δj gives an estim-
ate of the p-value PDF f (·) over the interval [p(j), p(j+1)] or,
more specifically, at mj . Therefore, applying a local regres-
sion technique such as LOESS (Cleveland, 1993; Cleveland
and Devlin, 1988) to the pairs (x̃j , ỹj ) gives an estimate ŷ(·)
of the PDF in a transformed space. An estimate f̂ (·) of
the p-value PDF can then be obtained from ŷ(·) by back-
transformation. Therefore, one can estimate the cFDR by
using the SPLOSH algorithm, which is described below:

(1) Compute the quantities defined in (11) and (16).

(2) Apply LOESS to (x̃j , ỹj ) for j = l, . . . , u−1 to obtain
an estimated curve ŷ(·).

(3) For j = l, . . . , u, let f̂ ∗(p̃(j)) = exp[̂y(x̃(j))] be an
estimate of f (p̃(j)) up to a unitizing constant c.

(4) Let f̂ (pi) = 1/cf̂ ∗(pi) estimate the PDF at pi for
i = 1, . . . , G, where

c = 1

2

u−1∑
j=l

[
f̂ ∗(p̃(j)) + f̂ ∗(p̃(j+1))

]
�j (17)

is determined by trapezoid rule integration (Anton,
1992).

(5) Let F̂ (p̃(l)) = 0, and for k = l + 1, . . . , u let

F̂ (p̃(k)) = 1

2

k−1∑
j=l

[
f̂ (p̃(j)) + f̂ (p̃(j+1))

]
�j (18)

be an estimate of F(p̃(j)) obtained by trapezoid rule
integration.

(6) Following Efron et al. (2001), let

π̂ = min
1≤i≤g

f̂ (pi). (19)

(7) For i = 1, . . . , g, obtain r(i) ≡ r̂(p(i)) by substi-
tuting p(i), π̂ and F̂ (p(i)) in (8). Additionally, use
L’Hospital’s rule (Anton, 1992)

lim
α→0

r̂(α) = lim
α→0

π̂α

F̂ (α)
= lim

α→0

π̂

f (α)
(20)

to motivate π̂/f̂ (0) as an estimate of the cFDR for
p-values that equal 0.

(8) Following Storey (2002), define

h(i) = min
k≥i

(
r(k)

)
(21)

as a monotone quantity based on the cFDR estimates
r(i) for i = 1, . . . , g.

This algorithm is called SPLOSH because it applies LOESS
to the p-value spacings (Pyke, 1965) to obtain a histogram
(the PDF estimate). Note that when r(i) is a smooth, generally
increasing sequence in i that h(i) will not differ substantially
from r(i) for any i. Hence, little downward bias is introduced
by the minimization operation in (21).

In practice, numerical difficulties can arise when consecut-
ive unique ordered p-values are very close to one another. To
avoid these difficulties, one may wish to round the p-values
to a specified number of decimal places before determining
the set of unique ordered p-values p̃(1), p̃(2), . . . , p̃(g̃).

The log and arc-sine transformations are important com-
ponents of the SPLOSH algorithm. The log-transformation
of δ(j) ensures that the PDF estimate will be strictly posit-
ive after back-transformation (Kooperberg and Stone, 1991).
Additionally, Pyke (1965) has shown that spacings are asymp-
totically independent exponential random variables whose
mean is given by the PDF in the neighborhood of the observa-
tions. Therefore, the log-transformation of δ(j) helps to make
the distribution of y(j) more symmetric, which is crucial to
the success of the LOESS algorithm in obtaining a reasonable
ŷ(·). The arc-sine transformation of m(j) prevents the LOESS
algorithm from overborrowing information from the center of
the p-value distribution in estimating ŷ(·) near p = 0 and
p = 1. Overborrowing from the center tends to bias estimates
of f (p) for small p-values downward and bias estimates of
f (p) for large p-values upward. This will decrease F̂ (p) for
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small p-values and increase π̂ resulting in substantially over-
estimating r(p) across the entire p-value distribution (i.e. the
numerator is inflated and the denominator is deflated). Over-
estimating r(p) will be detrimental to the statistical power of
inferential decisions based on r̂ or ĥ. The arc-sine transform-
ation still allows adequate borrowing from the center of the
p-value distribution to stabilize r̂ . Unlike the logit transform-
ation, the arc-sine transformation has the advantage of being
defined at p = 0 and p = 1. Moreover, the authors’ experi-
ence suggests that the logit transformation overly restricts the
LOESS algorithm in borrowing information from the center
to yield stable r̂ at the extremes of the p-value distribution.
Certainly, more rigorous mathematical examination of these
statements is warranted. Nevertheless, the SPLOSH algorithm
has proven useful in practice and performs well in simulation
studies as will be demonstrated later.

RESULTS
The performance of SPLOSH, BUM and the q-value are
now examined in the context of an example analysis and
a simulation study. Storey’s q-value is computed as pub-
lished, i.e. using (4) and (5). BUM is used as published
(Pounds and Morris, 2003) to compute (6). SPLOSH is
also used to compute (6). SPLOSH is applied using the S-
plus defaults (Insightful, 2002) for the tuning parameters
of the LOESS algorithm. The S-plus default for the band-
width is 0.75. To avoid numerical difficulties in the SPLOSH
algorithm, p-values were rounded to six decimal places before
determining the set of unique ordered p-values.

Analysis of the Arf targets
The SPLOSH algorithm and a comparison of its performance
with that of the q-value estimator (Storey, 2002) and BUM
(Pounds and Morris, 2003) are illustrated in the analysis of an
experiment described by Kuo et al. (2003). The experiment
was designed to screen for novel targets of the Arf gene on the
Arf-Mdm2-p53 tumor suppressor pathway (Sherr 1998;Kuo
et al. 2003). Both Affymetrix GeneChips and cDNA arrays
were used. Here, we use the p-values from the cDNA array
data for illustration.

The cDNA microarrays were printed from a murine clone
library available at St Jude Children’s Research Hospital. Arf
and three known p53 targets on the pathway, Mdm2, Cip1
and Btg2 were spot-printed on the arrays. Samples from the
reference and the Arf -induced cell lines were taken at 0, 2, 4
and 8 h. At each time point, three cDNA arrays were independ-
ently hybridized and scanned. There were 5776 probe spots
on each array. Only the spots that passed a quality control of
image analysis were used.

Expression levels were normalized and generated using
ANOVA models (Wolfinger et al., 2001). Probe spots with
less than two valid expression numbers at any time point
were further filtered out, leaving 2936 spots for differential
expression analysis. The ANOVA F -statistic was used to

test for differential expression of each probe across the four
time points. One concern was that the F -distribution may
not approximate the null distribution accurately due to the
small sample size at each time point; thus, a permutation
test based on 1050 permutations (50 permutations in a ‘test
run’ of the code + 1000 permutations in the ‘analysis run’
of the code) was applied to determine the p-values. The
p-values were computed by counting the number of permuta-
tions yielding a larger ANOVA F -statistic than the observed
F -statistic and dividing this number by 1050. Hence, p-values
determined by this approach could equal 0 = 0/1050, 1/1050,
2/1050, …,1049/1050 or 1050/1050 = 1.

Only SPLOSH and BUM provide estimates of the p-value
PDF. Figure 1 shows the BUM and SPLOSH estimates of
the p-value PDF, f̂ (p), plotted against a histogram of the
actual p-values. Clearly, SPLOSH more accurately repres-
ents the actual behavior of these p-values than does BUM.
In particular, BUM grossly overestimates the null proportion
π̂ , which is roughly equivalent to the PDF at p = 1. The
inadequate fit of the BUM model in this case causes one to
question the quality of the corresponding estimates of error
rates, such as the FDR. Figure 1 suggests that one can use
SPLOSH in the context of the error-region approach pro-
posed by Pounds and Morris (2003) to generate estimates of
the error quantities they discuss. These error rate quantities
include the FDR, empirical Bayes’ posterior (Efron et al.,
2001) and the number of each type of hypothesis testing
outcome (false positives, true positives, false negatives, true
negatives).

All three methods estimate the null proportion π . In this
case, π is the proportion of the 2936 examined genes whose
population mean expression is not altered by the experimental
treatment. Table 1 gives the estimates of π obtained by the
three methods. Figure 1 demonstrates that the null propor-
tion should be close to 0.45 and hence Storey’s method and
SPLOSH provide the most reasonable estimates of π . As
noted previously, BUM grossly overestimates π .

Figure 2 shows each method’s estimates and monotone
estimates as a function of α. BUM yields a monotone and
smooth estimate, but as noted previously, the results are not
reliable when such a great departure from model assumptions
is observed. Storey’s estimate p̂FDR(α) is not monotone in
α over any interval of substantial length and exhibits con-
siderable instability for α ≤ 0.04. Consequently, Storey’s
p̂FDR(α) differs substantially from his monotone q̂(α) over
most of the interval (0, 0.04). By contrast, the SPLOSH estim-
ate r̂(α) is monotone for all α and consequently r̂(α) = ĥ(α)

for all α. The SPLOSH estimate ĥ(α) appears to be the most
plausible of the three monotone estimates, because it is smooth
and is equivalent to SPLOSH’s r̂(α), which is based on the
excellent PDF estimate as seen in Figure 1.

The above example suggests that the SPLOSH method has
many desirable properties compared with the other methods.
However, one cannot truly appreciate the performance of the
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Fig. 1. Estimated densities and SPLOSH error region diagram from the Arf experiment. (A) BUM (dashed line) and SPLOSH (dotted line)
estimates of the p-value PDF against a traditional histogram. (B) An error region diagram based on the SPLOSH estimate. The areas of the
true positive (TP), false positive (FP), false negative (FN) and true negative (TN) regions give estimates of the proportion of tests resulting in
their respective outcomes. The areas also provide geometric interpretations of error rate quantities. For example, the pFDR is the ratio of the
area of the FP region to the sum of the areas of the TP and FP regions.

Table 1. Estimates of the null proportion π

Method π̂

BUM 0.6271
SPLOSH 0.4399
Storey 0.4453

methods in this case-study analysis, because we do not know
the true state of nature. In a simulation study, one can study
the behavior of the estimates over a large number of repeated
mimics of an experiment under an assumed state of nature.
In this way, one can identify preferred methods when the true
state of nature is identical or similar to the state of nature
assumed in the simulation.

Simulation study
The simulation study considers 1000 independent realiza-
tions of a setting in which the expression of 3000 genes is

studied in two groups. Each group is represented by three
independent chips. A proportion, π = 0.80, of the 3000 genes
(i.e. 2400 genes) has equal mean expression between the two
groups. The mean expression levels of the other genes differ by
1.5 units. The expression levels of all genes are assumed to be
normally distributed with variance 1. Moreover, all genes are
assumed independent of one another in the simulation. One-
way ANOVA (Casella and Berger, 1990) is used to assess
the significance of each gene and compute a corresponding
p-value. Storey’s method (2002), BUM (Pounds and Morris,
2003) and SPLOSH are applied to the set of p-values obtained
in each realization. In each realization, the simulation main-
tained a record of whether each p-value was testing a true or
false null hypothesis. In this way, the simulation could estim-
ate the actual cFDR as a function of the number of rejections
by averaging the proportion of false discoveries within each
rejection set across the replications. The expected value of the
method’s estimates of the cFDR (or pFDR) as a function of
the number of rejections is estimated by averaging over the
simulation replicates.
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Fig. 2. Comparison of the Arf experiment results. The unconstrained and monotone estimates obtained using each method are displayed
above. The figures on the left give the unconstrained estimates: Storey’s p̂FDR(α), BUM’s r̂(α) and SPLOSH’s r̂(α). The figures on the
right give the monotone estimates: Storey’s q̂(α), BUM’s r̂(α) and SPLOSH’s ĥ(α). The bottom left panel gives a legend indicating the line
patterns used to denote each method’s results.

Table 2. Behavior of π -estimators in the simulation

Method Ê(π̂) ŜE(π̂)

BUM 0.790 0.014
SPLOSH 0.786 0.065
Storey 0.807 0.039

Table 2 illustrates the properties of the estimators of π =
0.80 observed in the simulation. BUM tends to underestimate
π with low variance. Storey’s estimator of π shows very good
properties, and SPLOSH’s estimator of π exhibits the greatest
variation. However, the methods should be judged primarily
on the quality of the cFDR estimates they produce.

Figures 3 and 4 summarize the simulation results regarding
the properties of each method’s estimates of the cFDR as a
function of the number of rejections R. BUM systematically

underestimates the cFDR for a small R due to model
lack-of-fit. SPLOSH’s r̂(α) and Storey’s p̂FDR(α) appear
to be unbiased or to have little bias when used to estimate
the cFDR as a function of k. However, Storey’s estimator
becomes unstable for small k. After using cumulative minim-
ization to constrain the estimators to be monotone, Storey’s
q̂(p(i)) is considerably biased in the non-conservative direc-
tion, whereas the simulation estimate of the expected value of
SPLOSH’s ĥ(α) is only slightly below the simulation estimate
of the actual FDR.

A major advantage of SPLOSH is that it is not greatly
affected when cumulative minimization is used to enforce
monotonicity. On average across the simulation, SPLOSH’s
r̂(α) and ĥ(α) differed at only 2.96 of the 3000 p-values; in
877 of the 1000 replications the two quantities did not differ
at any p-value. In contrast, Storey’s p̂FDR(α) and q̂(α)

differed at an average of 788.5 of 3000 p-values, and the two
estimators differed at some p-value in all 1000 replications.
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Fig. 3. Simulation results: unconstrained estimators. The top left panel shows the simulation estimate of the actual cFDR and the simulation
estimates of the expected value of SPLOSH’s r̂(p(K)), Storey’s p̂FDR(p(K)) and BUM’s cFDR estimate. The top right panel shows the
simulation estimate of the actual cFDR as a solid black line and uses light gray lines to represent the 2.5, 25, 50, 75 and 97.5 percentiles of
SPLOSH’s r̂ . The bottom left and bottom right panels, respectively, depict the corresponding quantities for Storey’s p̂FDR and BUM’s cFDR
estimate in a similar manner.

DISCUSSION
In the simulation study and example analysis, SPLOSH dis-
played desirable properties as a method used to estimate the
proportion of false discoveries among the k-most significant
findings. Unlike BUM, SPLOSH is not subject to the ability
of an assumed model to accurately represent the observed
p-values, hence SPLOSH is applicable in a wider variety
of settings than BUM. In both the simulation and example,
SPLOSH exhibited greater stability for small p-values than
did Storey’s method. In the cases examined here, SPLOSH
was clearly the superior method of cFDR estimation.

It is reasonable to anticipate that SPLOSH will exhibit these
desirable characteristics in other settings as well. In forming
the estimate of F(α), Storey’s method considers information
only to the left of α whereas SPLOSH uses information on
both sides of α. For small α, Storey’s method is based on very
limited information, hence it becomes unstable. However,

SPLOSH maintains its level of stability, because it utilizes
information to the right as well. SPLOSH’s stability also
reduces the tendency to bias estimates downward when cumu-
lative minimization is used to enforce monotonicity. Storey’s
q̂(α) is substantially biased downward, because p̂FDR(α)

exhibits great fluctuation.
The properties of SPLOSH and other cFDR estimation

techniques should be further examined in a mathematically
rigorous manner. No mathematical proofs have established
the behavior of SPLOSH or BUM in a general setting. Math-
ematical proofs have established Storey’s F̂DR and p̂FDR
as conservative estimators in some settings, but as already
seen, these estimators can be too variable to be meaningfully
interpreted in practice. In particular, none of these methods
has yet been shown to estimate the cFDR reliably in a wide
variety of settings. The primary insight SPLOSH provides
for cFDR estimation is the importance of obtaining smooth
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Fig. 4. Simulation results: monotone estimators. The top left panel shows the simulation estimate of the actual cFDR as a solid black line and
the simulation estimates of the expected value of SPLOSH’s ĥ

(
p(K)

)
, Storey’s q̂

(
p(K)

)
and BUM’s cFDR estimate. The top right panel shows

the simulation estimate of the actual cFDR as a dark solid line and uses light gray lines to represent the 2.5, 25, 50, 75, and 97.5 percentiles
of SPLOSH’s ĥ. The bottom left and bottom right panels, respectively, depict the corresponding quantities for Storey’s q̂ and BUM’s cFDR
estimate in a similar fashion.

cFDR estimates before enforcing monotonicity by cumulative
minimization.

SPLOSH demonstrates that smoothing substantially sta-
bilizes cFDR estimation. The concept of smoothing may
improve other methods used in the analysis of mircoarray
data as well. Specifically, the significance analysis of microar-
rays (SAM) (Tusher et al., 2001) approach may benefit from
smoothing. SAM considers the set of ordered test statistics
T1 ≤ T2 ≤ · · · ≤ Tg and uses permutation techniques to
generate estimates of the expected order statistics under the
null hypothesis T ∗

1 ≤ T ∗
2 ≤ · · · ≤ T ∗

g . SAM then determ-
ines the smallest i such that Ti − T ∗

i is greater than some
threshold τ and declares Tj significant for all j ≥ i. Smooth-
ing Ti − T ∗

i before determining the threshold crossing index
i may help to stabilize SAM by reducing the role of ran-
dom fluctuations in determining the first threshold crossing
point.

The use of L’Hospital’s rule brings up an important theoret-
ical question: ‘What is the limiting behavior of the cFDR,

pFDR and FDR as α approaches zero?’ Benjamini and
Hochberg (1995) naturally define the FDR associated with
no rejections as zero. However, if one considers the proced-
ure of rejecting all hypothesis with p-value less than α, it is
unclear whether or not FDR(α) is a smooth function at α = 0.
Further investigation into this topic is warranted. Additionally,
it is important to examine mathematically the FDR estima-
tion and control properties of the SPLOSH procedure for very
small α.

All three methods considered in the example and simula-
tion study assume that the p-values are reasonably modeled
as independently and identically distributed random variables
arising from a mixture model of the form proposed by Storey
(2002). When this assumption is violated, these methods
may yield unreliable results (Benjamini and Yekutieli, 2001).
In such a scenario, one may consider using computationally
intensive resampling procedures such as those described by
Yekutieli and Benjamini (1999) or Ge et al. (2003) to account
for dependencies between tests.
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The SPLOSH algorithm could be modified or general-
ized by using smoothing techniques other than the LOESS
algorithm. Fan and Gijbels (1996) and Hart (1997) describe
alternative smoothing algorithms that could be used to obtain
smooth PDF or CDF estimates. Although SPLOSH per-
forms quite well, it may not be the optimal smoothing
algorithm in the context of cFDR estimation based on
p-value PDF or CDF estimates. An optimal smoothing
algorithm for purposes of cFDR estimation and control is
yet to be determined. Additional generalizations could be
found by considering other transformations as well. Determ-
ining an optimal transformation is another open research
topic.

The FDR, cFDR and pFDR are only a subset of metrics of
the occurrence of errors in multiple testing settings. There are
a variety of other techniques and measures of the occurrence
of errors to address the multiplicity issue that arises in the ana-
lysis of microarray data. Dudoit et al. (2003) give an excellent
overview of error occurrence metrics, types of control and
algorithms used to control the occurrence of errors.
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