Análisis Funcional - 1° cuatrimestre 2002

CÁLCULO FUNCIONAL

En la altura la pelota no dobla.

- 1. Si H es un espacio de Hilbert, $A \in \mathcal{L}(H)$ un operador positivo, entonces $||A^{1/2}|| = ||A||^{1/2}$.
- 2. Sean H un espacio de Hilbert, A, $B \in \mathcal{L}(H)$ operadores positivos tales que AB = BA, entonces AB es positivo.
- 3. Sean H un espacio de Hilbert, A, S_1 , S_2 , T_1 , $T_2 \in \mathcal{L}(H)$ tales que $0 \le S_1 \le T_1$ y $0 \le S_2 \le T_2$, entonces

$$||S_1^{1/2}A|| \le ||T_1^{1/2}A||$$
$$||S_1^{1/2}AS_2^{1/2}|| \le ||T_1^{1/2}AT_2^{1/2}||$$

4. Si H es un espacio de Hilbert, $A \in \mathcal{L}(H)$ un operador positivo, entonces

$$||Ax||^2 \le ||A|| \langle Ax, x \rangle$$

- 5. Sea H un espacio de Hilbert separable con base $\{e_n\}_n$, sea $K \in \mathcal{L}(H)$ un operador compacto positivo con descomposición espectral $Kx = \sum_{n=1}^{\infty} \lambda_n \langle x, e_n \rangle e_n$, entonces el operador $K^{1/2}$ es compacto y su descomposición espectral es $K^{1/2}x = \sum_{n=1}^{\infty} \lambda_n^{1/2} \langle x, e_n \rangle e_n$.
- 6. Sean H un espacio de Hilbert, $A, B \in \mathcal{L}(H)$ tales que $0 \le A \le B$. Si B es compacto, entonces A es compacto.
- 7. Si H es un espacio de Hilbert, $A \in \mathcal{L}(H)$ tal que $I \leq A$, entonces $A^{1/2}$ es acotado inferiormente.
- 8. Sean H un espacio de Hilbert, $A \in \mathcal{L}(H)$. Probar que

$$A \ge 0 \Longleftrightarrow \exists B \in \mathcal{L}(H)/\ A = B^*B$$

Nombre: Si $A \in \mathcal{L}(H), |A| = (A^*A)^{1/2}$

- 9. Sean H un espacio de Hilbert, $T \in \mathcal{L}(H)$.
 - (a) ||Tx|| = || |T|x||
 - (b) R(T) es cerrado si y sólo si R(|T|) es cerrado.
- 10. **Descomposición Polar:** Sean H un espacio de Hilbert, $T \in \mathcal{L}(H)$. Entonces existe una única isometría parcial $U \in \mathcal{L}(H)$ tal que T = U | T | y ker $U = \ker T$.

1

- 11. Sean H un espacio de Hilbert, $T \in \mathcal{L}(H)$ con descomposición polar T = U|T|. Entonces:
 - (a) $|T| = U^* T$
 - (b) Si T es inversible, U es un operador unitario.
 - (c) Si $S:\ell^2\to\ell^2$ es el shift a derecha y $S=U\,|S|$ es su descomposición polar, entonces U no es unitario.
- (a) Sean H un espacio de Hilbert, A ∈ L(H) un operador autoadjunto. Probar que existen únicos operadores positivos A⁺ y A⁻ en L(H) tales que A = A⁺ A⁻ y A⁺A⁻ = A⁻A⁺ = 0. Además ||A|| = max{||A⁺||, ||A⁻||}.
 (Sug: Considerar las funciones f⁺(t) = max{t, 0} = ½(|t| + t) y f⁻(t) = max{-t, 0} = ½(|t|-t), para la unicidad recordar que |t| se aproxima uniformemente sobre compactos de IR por polinomios reales sin término independiente)
 - (b) Si $\varphi \in L^{\infty}[0,1]$ a valores reales, y $M_{\varphi} \in \mathcal{L}(L^2[0,1])$ es el operador de multiplicación, hallar M_{φ}^+ y M_{φ}^-
- 13. Sean H un espacio de Hilbert, $A \in \mathcal{L}(H)$. Probar que:
 - (a) $A = \Re(A) + i\Im(A)$, donde $\Re(A) = \frac{A + A^*}{2}$, $\Im(A) = \frac{A A^*}{2i}$ son operadores autoadjuntos.
 - (b) A es combinación lineal de a lo sumo 4 operadores unitarios. (Sug: Si $A^* = A$, $||A|| \le 1$, usar $f(t) = t + i\sqrt{1 t^2} \in C(\sigma(A))$ y que $t = \frac{f(t) + \overline{f(t)}}{2}$)
- 14. Sean H un espacio de Hilbert, $A \in \mathcal{L}(H)$ un operador positivo. $0 \notin \sigma(A)$ si y sólo si existe $B \in \mathcal{L}(H)$ autoadjunto tal que $A = e^B$.
- 15. Sean H un espacio de Hilbert, $A \in \mathcal{L}(H)$, tal que $0 \le A \le I$. Entonces $\{A^{1/n}\}_n$ es una sucesión creciente en $\mathcal{L}(H)$ y $\forall n, 0 \le A^{1/n} \le I$.
- 16. Sea H un espacio de Hilbert, sea $\varphi : \mathcal{L}(H) \to \mathcal{L}(H)$ lineal tal que $\varphi(I) = I$, $\varphi(AB) = \varphi(A)\varphi(B)$ y $\varphi(A^*) = \varphi(A)^*$. Entonces:
 - (a) $\forall A \in \mathcal{L}(H)$, $\sigma(\varphi(A)) \subset \sigma(A)$ y $\|\varphi(A)\| \le \|A\|$
 - (b) Si $A \in \mathcal{L}(H)$ es autoadjunto y $f \in C(\sigma(A))$ entonces $\varphi(f(A)) = f(\varphi(A))$
 - (c) Si φ es inyectiva y $A \in \mathcal{L}(H)$ es autoadjunto entonces $\sigma(\varphi(A)) = \sigma(A)$. (Sug: Si no coinciden los espectros, debe existir $f \in C(\sigma(A))$ no nula, tal que $f|_{\sigma(\varphi(A))} \equiv 0$)
 - (d) Si φ es inyectiva y $A \in \mathcal{L}(H)$ entonces $\|\varphi(A)\| = \|A\|$.