Análisis Funcional - 1° cuatrimestre 2004

PRÁCTICA 1 ESPACIOS DE BANACH

- 1. (a) Si $1 \le p \le \infty$, $s_f = \{(x_n)_n \in \ell^p : x_n = 0 \text{ p.c.t. } n\}$, entonces s_f es un subespacio de ℓ^p no cerrado (más aún, es denso).
 - (b) Sean E un espacio vectorial normado, $S\subset E$ un subespacio, entonces \overline{S} es un subespacio.
 - (c) Sean E un espacio de Banach, S un subespacio cerrado de E, entonces S, con la norma inducida por E, es un espacio de Banach.
- 2. (a) Sea K un espacio topológico compacto, entonces $C(K)=\{f:K\to\mathbb{C}\text{ continuas}\}$ con la norma

$$||f||_{\infty} = \sup_{x \in K} |f(x)|$$

es un espacio de Banach.

- (b) Si K es un compacto de \mathbb{C}^n , C(K) es separable.
- 3. Sea (E, || ||) un espacio vectorial normado. Son equivalentes:
 - (a) E es Banach
 - (b) $\{x \in E : ||x|| \le 1\}$ es completo
 - (c) $\{x \in E : ||x|| = 1\}$ es completo
- 4. Si E es un espacio vectorial normado de dimensión finita, demostrar que $B(0,1) = \{x \in E : ||x|| \le 1\}$ es compacta.

DEFINICIÓN: Sean E un espacio vectorial, $\| \| y \| \|'$ dos normas definidas sobre E. Decimos que las normas son equivalentes si y sólo si $\exists a, b > 0/\|x\| \le a\|x\|' \le b\|x\| \ \forall x \in E$.

- 5. (a) Dos normas definidas sobre un espacio vectorial son equivalentes si y sólo si cada sucesión que converge con una, converge con la otra.
 - (b) Si E es un espacio vectorial de dimensión finita, todas las normas definidas sobre E son equivalentes.
 - (c) Si E es un espacio vectorial de dimensión finita, cualquier norma que se defina sobre E hace de E un espacio de Banach.
 - (d) Sean E un espacio vectorial normado, $S\subset E$ un subespacio de dimensión finita, entonces S es cerrado.
- 6. Sean E un espacio vectorial normado, $F \subset E$ un subespacio de dimensión finita, entonces $\forall x \notin F \exists y_0 \in F$ que realiza la distancia, o sea

$$||x - y_0|| = d(x, F) = \inf_{y \in F} ||x - y||$$

Sugerencia. Ver que $y_0 \in S = \{y \in F : ||y|| \le 2||x||\}.$

7. Lema de Riesz: Sean E un espacio vectorial normado, $F \subset E$ un subespacio cerrado propio $(F \neq E)$, 0 < a < 1, entonces $\exists x_a \in E$, $||x_a|| = 1$ tal que $d(x_a, F) \geq a$. (Sug: Sea $x \in E - F$, d = d(x, F) > 0, tomar $y_0 \in F$ tal que $0 < d(x, y_0) < \frac{d}{a}$ y probar que $x_a = \frac{x - y_0}{||x - y_0||}$ es el que sirve).

1

- 8. Sea E un espacio vectorial normado, B(0,1) es compacta si y sólo si dim $E < \infty$.
- 9. (a) Sean E un espacio vectorial normado, $S \subset E$ un subespacio. S tiene interior no vacío si y sólo si S = E.
 - (b) Sea E un espacio de Banach de dimensión infinita, entonces dim $E > \aleph_0$.
- 10. Demostrar que un espacio de Banach tiene dimensión finita si y sólo si todo subespacio es cerrado.
- 11. Sea E un espacio vectorial normado, E es de Banach si y sólo si $\forall (x_n)_n \subset E$ vale que: $\sum_{n=1}^{\infty} ||x_n|| < \infty \Rightarrow \sum_{n=1}^{\infty} x_n$ converge en E.
- 12. Sean $E \ y \ F$ espacios vectoriales normados. En $E \times F$, definimos $||(x,y)|| = ||x||_E + ||y||_F$.
 - (a) $(E \times F, || ||)$ es un espacio vectorial normado.
 - (b) Si $E \vee F$ son espacios de Banach, $E \times F$ resulta un espacio de Banach.
 - (c) La inyección $J_E: E \to E \times F$ dada por $J_E(x) = (x,0)$ y la proyección $P_E: E \times F \to E$ dada por $P_E(x,y) = x$ son ambas continuas. Lo mismo vale para J_F y P_F .
- 13. Sean E un espacio de Banach, $S \subset E$ un subespacio cerrado.
 - (a) Probar que E/S es un espacio vectorial.
 - (b) Si definimos en E/S la norma ||[x]|| = ||x + S|| = d(x, S), probar que está bien definida y que es, efectivamente, una norma.
 - (c) Si $\Pi: E \to E/S$ es la proyección al cociente $\Pi(x) = [x]$, ver que Π es lineal, que $\|\Pi\| \le 1$ y que Π es abierta.
 - (d) Probar que E/S es un espacio de Banach.
- 14. Sean E un espacio de Banach, $S,T\subset E$ subespacios cerrados con dim $T<\infty$ entonces S+T es cerrado.
- 15. Probar que los siguientes espacios son Banach con las normas indicadas. Por Ω entendemos un dominio compacto en \mathbb{R}^N .
 - (a) $C^1(\Omega)$ $||f|| = ||f||_{\infty} + \sum ||f_{x_i}||_{\infty}.$
 - (b) $C^r(\Omega)$ $||f|| = ||f||_{\infty} + \sum ||f_{x_i}||_{\infty} + \dots + \sum ||f_{x_{i_1},\dots,x_{i_r}}||_{\infty}.$
 - (c) $Lip(\Omega)$ $||f|| = ||f||_{\infty} + \sup_{x,y \in \Omega} \frac{|f(x) f(y)|}{|x y|}.$
 - (d) $C^{\alpha} \qquad \|f\| = \|f\|_{\infty} + \sup_{x,y \in \Omega} \frac{|f(x) f(y)|}{|x y|^{\alpha}}, \qquad 0 < \alpha < 1.$ ¿Qué sucede si $\alpha > 1$?
 - (e) El Espacio de las Funciones de Variación Acotada.

$$BV([0,1]) = \{ f \in C([0,1]) / \sup_{0=a_0 < a_1 < \dots < a_n=1} \sum_{i=0}^{n-1} |f(a_{i+1}) - f(a_i)| < +\infty \}$$

$$n-1$$

$$||f|| = ||f||_{\infty} + \sup_{0=a_0 < a_1 < \dots < a_n = 1} \sum_{i=0}^{n-1} |f(a_{i+1}) - f(a_i)|$$