Análisis Funcional - 1er cuatrimestre 2004

Práctica 8

Operadores compactos – Espectro de un operador

- 1. Sean E y F espacios de Banach, $T \in \mathcal{L}(E, F)$. Son equivalentes
 - (a) T es compacto.
 - (b) $\overline{T(A)}$ es compacto, para todo conjunto acotado $A \subset E$.
 - (c) Para toda sucesión $(x_n)_{n\in\mathbb{N}}$ acotada, $(Tx_n)_{n\in\mathbb{N}}$ admite una subsucesión convergente.
- 2. Sean E y F espacios de Banach, $T \in \mathcal{L}(E, F)$. Si T es compacto entonces $\forall x_n, x \in E$ tales que $x_n \rightharpoonup x$ se verifica que $T(x_n) \to T(x)$.
- 3. (a) Sea E un espacio de Banach. Si dim $E = \infty$, $Id: E \to E$ no es compacto.
 - (b) Sean E y F espacios de Banach, $T \in \mathcal{L}(E, F)$. Si dim $E = \infty$ y T es compacto, entonces T no es inversible.
- 4. Sea $T: \ell^p \to \ell^p$ dado por $T(x) = (\alpha_n x_n)_{n \in \mathbb{N}}$, donde $1 y <math>(\alpha_n)_{n \in \mathbb{N}} \in \ell^{\infty}$.
 - (a) T es compacto si y sólo si $\alpha_n \to 0$
 - (b) R(T) es cerrado si y sólo si $(\frac{1}{\alpha_n})_{n\in\mathbb{N}}$ es acotada (considerando sólo los n tales que $\alpha_n \neq 0$).
 - (c) Si $\alpha_n \to 0$, hallar $\sigma(T)$.
 - (d) Hallar $\sigma(T)$ en el caso general $(\alpha_n \in \ell^{\infty})$.
- 5. Sean E y F espacios de Banach, $T \in \mathcal{K}(E, F)$.
 - (a) Si existe $S \subset R(T)$ subespacio cerrado entonces dim $S < \infty$.
 - (b) Si R(T) es cerrado entonces dim $R(T) < \infty$.
 - (c) Si dim $E = \infty$, entonces existe $(x_n)_{n \in \mathbb{N}} \in E$ tal que $||x_n|| = 1 \quad \forall n \text{ y } Tx_n \to 0$. Sugerencia. T acotado inferiormente $\Rightarrow R(T)$ cerrado.
- 6. (a) Si $T \in \mathcal{L}(\ell^2, \ell^1)$ entonces T es compacto. Sugerencia. Recordar que en ℓ^1 , $x_n \rightharpoonup x \Leftrightarrow x_n \to x$.
 - (b) Sea $i: \ell^1 \to \ell^2$ la inclusión. ¿Es i compacta?
 - (c) Probar que la inclusión, $i: C^1([0,1]) \to C([0,1])$ es compacta.
- 7. Sean $k \in C([a,b] \times [a,b])$ y $K: C[a,b] \to C[a,b]$ dado por

$$(Kf)(x) = \int_a^b k(x, y) f(y) \, dy$$

Probar que K es un operador lineal acotado y compacto. Sugerencia. Arzela-Ascoli.

- 8. Sean $k \in L^2([0,1] \times [0,1])$ y $K \in \mathcal{L}(L^2([0,1]))$ el operador integral. Probar que:
 - (a) Si $(e_n)_{n\in\mathbb{N}}$ es una base de $L^2([0,1])$, entonces $(e_{nm}(x,y)=e_n(x)\overline{e_m(y)})_{n,m\in\mathbb{N}}$ es una base de $L^2([0,1]\times[0,1])$.

- (b) Si $k(x,y) = \sum_{i,j=1}^{N} \alpha_{ij} f_i(x) g_j(y)$, con $\alpha_{ij} \in \mathbb{C}$, $f_i, g_j \in L^2([0,1])$ entonces dim R(K) < N.
- (c) Si $k_n \to k$ en $L^2([0,1] \times [0,1])$, entonces $K_n \to K$ en $\mathcal{L}(L^2([0,1]))$.
- (d) Si $k(x,y) = \sum_{n,m=1}^{\infty} \alpha_{nm} e_n(x) \overline{e_m(y)}$ y $k_N(x,y) = \sum_{n,m=1}^{N} \alpha_{nm} e_n(x) \overline{e_m(y)}$, entonces $k_N \to k$ en $L^2([0,1] \times [0,1])$.
- (e) Deducir de todo lo anterior que K es compacto.
- 9. Sean $U \in \mathbb{R}^n$ un abierto acotado, $\varphi \in C(\overline{U})$ y $M_{\varphi} \in \mathcal{L}(C(\overline{U}))$ el operador de multiplicación.
 - (a) Dar condiciones necesarias y suficientes para que M_{φ} sea inversible.
 - (b) Calcular $\sigma(M_{\varphi})$
 - (c) Dar condiciones necesarias y suficientes para que M_{φ} sea compacto.
- 10. Sean E y F espacios de Banach. Si $\forall \varepsilon > 0$ y $\forall K \subset E$ compacto $\exists T \in \mathcal{L}(E)$ tal que dim $R(T) < \infty$ y $\sup_{x \in K} ||Tx x|| < \varepsilon$, entonces para todo operador $A \in \mathcal{K}(F, E)$ existen operadores $A_n \in \mathcal{L}(F, E)$ tales que dim $R(A_n) < \infty \quad \forall n \in \mathbb{N} \text{ y } A_n \to A$.
- 11. Sean E un espacio de Banach y $T \in \mathcal{L}(E)$. Probar que $\sigma(T) = \overline{\sigma(T^*)}$ (conjugado de).
- 12. Si $1 , sean S y T en <math>\mathcal{L}(\ell^p)$ los shifts a derecha e izquierda respectivamente.
 - (a) Probar que $\sigma(T)=\{\lambda\in\mathbb{C}\ /\ |\lambda|\le 1\}$ y que si $|\lambda|<1$ entonces λ es un autovalor.
 - (b) Calcular $\sigma(S)$
 - (c) Probar que S no tiene autovalores.
- 13. Sean E un espacio de Banach, $T \in \mathcal{L}(E)$.
 - (a) Si $\lambda \in \sigma(T)$ entonces $\lambda^n \in \sigma(T^n) \ \forall n \in \mathbb{N}$.
 - (b) Si T es inversible y $\lambda \in \sigma(T)$ entonces $\lambda^{-1} \in \sigma(T^{-1})$
- 14. Si $1 , sea <math>T: \ell^p \to \ell^p$ dado por

$$T(x_1, x_2, x_3, \ldots) = (0, x_1, 0, x_3, 0, x_5, \ldots)$$

- (a) Probar que T no es compacto.
- (b) Probar que T^2 sí es compacto.
- (c) Calcular $\sigma(T)$
- 15. Sea $\varphi \in L^{\infty}[0,1]$ y sea $M_{\varphi} \in \mathcal{L}(L^{2}[0,1])$ el operador de multiplicación. Hallar $\sigma(M_{\varphi})$ en los siguientes casos:
 - (a) φ continua en [0,1].

(b)
$$\varphi(t) = \begin{cases} 0 & \text{si } t \in [0, \frac{1}{2}) \\ \frac{1}{2} & \text{si } t = \frac{1}{2} \\ 1 & \text{si } t \in (\frac{1}{2}, 1] \end{cases}$$