Análisis Funcional - 1° cuatrimestre 2007

OPERADORES ACOTADOS- ADJUNTO

Principio de acotación uniforme, Teorema de la aplicación abierta, Teorema del gráfico cerrado

- 1. Sean E y F espacios normados, $T: E \to F$ lineal. Son equivalentes:
 - (i) T es continuo.
 - (ii) T es continuo en 0.
 - (iii) T es acotado (i.e. $||T|| = \sup\{||Tx|| : ||x|| \le 1\} < \infty$)
- 2. Sean E y F espacios normados, $T:E\to F$ lineal. Entonces

$$||T|| = \sup\{||Tx|| : x \in E, ||x|| = 1\}$$
$$= \sup\{||Tx|| : x \in E, ||x|| < 1\}$$
$$= \sup\{\frac{||Tx||}{||x||} : x \in E, x \neq 0\}$$

- $y ||Tx|| \le ||T|| ||x||$
- 3. Sea $A \in \mathbb{R}^n \times \mathbb{R}^n$ una matriz simétrica. Considerar a A como un operador lineal de \mathbb{R}^n en \mathbb{R}^n , utilizando en \mathbb{R}^n la norma euclídea. Probar que $||A|| = \max\{|\lambda| : \lambda \text{ es un autovalor de } A\}$.
- 4. Operadores Shift: Sean $1 \le p \le \infty$, $S: \ell^p \to \ell^p$, $T: \ell^p \to \ell^p$ dados por

$$S(x_1, x_2, x_3, \ldots) = (0, x_1, x_2, \ldots)$$

$$T(x_1, x_2, x_3, \ldots) = (x_2, x_3, x_4, \ldots)$$

- a) Probar que $S \in \mathcal{L}(\ell^p)$ y es invectivo. Calcular ||S||.
- b) Probar que $T \in \mathcal{L}(\ell^p)$ y es survectivo. Calcular ||T||.
- c) TS = I, $ST \neq I$.
- 5. Operadores de Multiplicación:
 - a) Si $\varphi \in C[0,1]$, sea $M_{\varphi}: C[0,1] \to C[0,1]$ definida por

$$M_{\varphi}(f) = \varphi f$$

Probar que $M_{\varphi} \in \mathcal{L}(C[0,1])$ y calcular su norma.

- b) Si $\varphi \in L^{\infty}[0,1]$, probar que M_{φ} , es un operador acotado de $L^{p}[0,1]$ en $L^{p}[0,1]$ y calcular su norma.
- 6. Operadores integrales: Si $k \in L^2([0,1] \times [0,1])$, sea $K: L^2([0,1]) \to L^2([0,1])$ dado por

1

$$(Kf)(s) = \int_0^1 k(s,t) f(t) dt$$

Probar que $K \in \mathcal{L}(L^2[0,1])$ y que $||K|| \le ||k||_2$

7. Operadores de Convolución Sea $g \in L^1(\mathbb{R}^n)$ y definamos

$$C_q(f) = f * g$$

entonces $C_g \in \mathcal{L}(L^1(\mathbb{R}^n))$ y $||C_g|| = ||g||_{L^1}$.

- 8. Sea $\alpha = (\alpha_n)_n$ una sucesión de números complejos, $1 \leq p < \infty$, definimos M_α : $\ell^p \to \ell^p$ por $M_\alpha((x_n)_n) = (\alpha_n x_n)_n$. Probar:
 - a) M_{α} está bien definida $\Leftrightarrow \alpha = (\alpha_n)_n \in \ell^{\infty}$
 - b) M_{α} es inyectiva $\Leftrightarrow \alpha_n \neq 0 \ \forall n$
 - c) M_{α} es un isomorfismo $\Leftrightarrow (\frac{1}{\alpha_n})_n \in \ell^{\infty}$
 - $d) ||M_{\alpha}|| = ||\alpha||_{\infty}$
- 9. Si $T, S, T^{-1}, S^{-1} \in \mathcal{L}(X)$, entonces $(TS)^{-1} \in \mathcal{L}(X)$ y $(TS)^{-1} = S^{-1}T^{-1}$.
- 10. Sea E un espacio de Banach, sean $A_n, A, B_n, B \in \mathcal{L}(E)$.
 - (i) $||AB|| \le ||A|| \, ||B||$
 - (ii) Si $A_n \to A$ y $B_n \to B$ entonces $A_n B_n \to AB$
- 11. Sea X un espacio de Banach y sea $A \in \mathcal{L}(X)$, ||A|| < 1. Probar que (I + A) es inversible, $(I + A)^{-1} \in \mathcal{L}(X)$ y que su inversa viene dada por

$$(I+A)^{-1} = \sum_{n=0}^{\infty} (-1)^n A^n,$$

donde la serie es absolutamente convergente en $\mathcal{L}(X)$. Probar tambien que

$$||(I+A)^{-1}|| \le \frac{1}{1-||A||}.$$

12. (i) Sea X un espacio de Banach y sea T, $T^{-1} \in \mathcal{L}(X)$. Probar que si $S \in \mathcal{L}(X)$ y $||S - T|| \le 1/||T^{-1}||$, entonces S es inversible, $S^{-1} \in \mathcal{L}(X)$, y

$$||S^{-1}|| \le ||S^{-1} - T^{-1}|| < \frac{||T^{-1}||}{1 - ||S - T|| ||T^{-1}||}.$$

- (ii) $\mathcal{L}_0(X) = \{T \in \mathcal{L}(X), T \text{ inversible}\}\$ es abierto en $\mathcal{L}(X)$.
- 13. Sean E y F espacios de Banach y sean $x_n, x \in E$, $A_n, A \in \mathcal{L}(E, F) \ \forall n \in \mathbb{N}$. Si $x_n \to x$ y $A_n \to A$ entonces $A_n x_n \to Ax$
- 14. Sea E un espacio de Banach, sea $P: E \to E$ lineal tal que $P^2 = P$, sean $S = \ker(P)$, T = R(P). Probar que $P \in \mathcal{L}(E)$ si y sólo si S y T son cerrados.
- 15. Sean E un espacio de Banach, $A_n \in \mathcal{L}(E)$ inversibles, $A \in \mathcal{L}(E)$ no inversible tales que $A_n \to A$, entonces $||A_n^{-1}|| \to \infty$.
- 16. Sean E un espacio vectorial normado, $S \subset E$ un subespacio de dimensión finita, entonces $\exists \ Q \in \mathcal{L}(E)/\ Q^2 = Q, \ R(Q) = S.$

2

- 17. Sea E el espacio de Banach real $L^1((1, +\infty))$, sea $T: E \to E$ dado por $Tf(t) = \frac{1}{t} f(t)$. Probar que T es acotado pero no abierto. (Sug: $0 \in T(B(0, 1))$ no es punto interior)
- 18. (i) Si $1 \leq p < \infty$, S y T son los shifts definidos en el ejercicio 4, calcular S^* y T^* . (ii) Si $J:\ell^2 \to c_0$, J(x)=x, probar que $J\in \mathcal{L}(\ell^2,c_0)$ y calcular J^* .
- 19. Caracterizar M_{φ}^* , siendo M_{φ} los operadores de multiplicación por φ definidos en el ejercicio 5. (Tener en cuenta las caracterizaciones del dual de C([0,1]) y L^p)
- 20. Sea E un espacio vectorial normado, sean $A, B \in \mathcal{L}(E)$ entonces $(AB)^* = B^*A^*$.
- 21. Sean E, F espacios de Banach, $A \in \mathcal{L}(E, F)$.
 - a) $||A|| = ||A^*||$
 - b) Si A es inversible entonces A^* es inversible y $(A^*)^{-1} = (A^{-1})^*$
 - c) La aplicación $\Phi: \mathcal{L}(E,F) \to \mathcal{L}(F^*,E^*)$ dada por $\Phi(A) = A^*$ es continua.
- 22. Sean $\Omega \subset \tilde{\Omega}$ dos conjuntos medibles de \mathbb{R}^n . Se definen los operadores

$$\rho: L^p(\tilde{\Omega}) \to L^p(\Omega), \qquad e: L^p(\Omega) \to L^p(\tilde{\Omega}),$$

dados por $\rho(u) = u \mid_{\Omega} y \ e(u)(t) = u(t)$ si $t \in \Omega$ y 0 en otro caso. Probar que ρ y e son acotados, calcular sus normas y calcular ρ^* , e^* .

- 23. Sean E un espacio de Banach, F un subespacio de E, S un subespacio de E^* . Probar que:
 - a) (i) $F^{\perp} = \{ \gamma \in E^* : \gamma(x) = 0 \ \forall \ x \in F \}$ es un subespacio cerrado de E^* .
 - (ii) $^{\perp}S = \{x \in E : \gamma(x) = 0 \ \forall \ \gamma \in S\}$ es un subespacio cerrado de E.
 - (iii) $^{\perp}(F^{\perp}) = \overline{F}$
 - (iv) $({}^{\perp}S)^{\perp} \supset \overline{S}$
 - b) Sea c_{00} el subespacio de $\ell^{\infty}=(\ell^1)^*$ de sucesiones finitas. Probar que $({}^{\perp}c_{00})^{\perp}$ contiene estrictamente a $\overline{c_{00}}$
- 24. Sean E, F espacios de Banach, $A \in \mathcal{L}(E, F)$. Probar que:
 - $a) \ R(A)^{\perp} = \ker(A^*)$
 - $b)^{-\perp}R(A^*) = \ker(A)$
 - $c) \ \overline{R(A)} =^{\perp} \ker(A^*)$
 - $d) \ R(A^*) \subseteq (\ker(A))^{\perp}$
- 25. Sean E, F espacios vectoriales normados, $T \in \mathcal{L}(E, F), x \in E$, entonces

$$\operatorname{dist}(x,\ker(T)) = \max\{|\varphi(x)| : \varphi \in (\ker(T))^{\perp}, \ \|\varphi\| \leq 1\}$$

26. Sean E un espacio de Banach, $F \subset E$ un subespacio y $\Phi : E^* \to F^*$ dada por $\Phi(\varphi) = \varphi|_F$. Probar que $\Phi \in \mathcal{L}(E^*, F^*)$, Φ es suryectiva y calcular $\ker(\Phi)$.

- 27. Si $E ext{ y } F$ son espacios de Banach, $T \in \mathcal{L}(E, F)$ entonces $\widehat{T} : E/\ker(T) \to F$, dado por $\widehat{T}([x]) = T(x)$, es lineal, continuo $y \|\widehat{T}\| = \|T\|$.
- 28. Sean E un espacio de Banach, $S \subset E$ un subespacio cerrado. Entonces se dan los siguientes isomorfismos isométricos:

$$(E/S)^* \cong S^{\perp}$$

$$E^*/S^{\perp} \cong S^*$$

29. Si E y F son espacios de Banach, $T \in \mathcal{L}(E,F)$ con R(T) cerrado, entonces $R(T^*)$ es cerrado y

$$R(T^*) = (\ker(T))^{\perp}$$

DEFINICIÓN: Sea E un espacio de Banach, $T \in \mathcal{L}(E)$ se dice acotado inferiormente si y sólo si $\exists c > 0 / \|Tx\| \ge c \|x\| \ \forall x \in E$.

- 30. Sean E un espacio de Banach, $T \in \mathcal{L}(E)$. Probar que:
 - a) Si T es acotado inferiormente entonces R(T) es cerrado.
 - b) T acotado inferiormente y survectivo si y sólo si T inversible.
- 31. Sea $V: L^2[0,1] \to L^2[0,1]$ el operador de Volterra, dado por

$$Vf(x) = \int_0^x f(t) \ dt$$

- a) Probar que V no es acotado inferiormente.
- b) Caracterizar V^* .

DEFINICIÓN: Sea E, F dos espacios de Banach, $T_n, T \in \mathcal{L}(E, F)$. Decimos que T_n converge fuertemente a T si para cualquier $x \in E$ se tiene que $T_n(x) \to T(x)$.

- 32. Si T_n tiende fuertemente a T y x_n tiende a x entonces $T_n(x_n) \to T(x)$.
- 33. Si T_n tiende a T fuertemente y S_n tiende a S fuertemente, entonces T_nS_n tiende a TS fuertemente.
- 34. Sean E, F dos espacios de Banach. Sean $A_n \in \mathcal{L}(E, F)$ tales que $A_n(x)$ es de Cauchy para todo $x \in E$. Probar que existe un $A \in \mathcal{L}(E, F)$ tal que $A_n \to A$ fuertemente.
- 35. En el espacio ℓ^2 se definen las siguientes sucesiones operadores

$$A_n x = (x_1/n, \ldots, x_k/n, \ldots)$$

$$B_n x = (0, \dots, 0, x_{n+1}, x_{n+2}, \dots)$$

Decidir en cada caso si la sucesión tiende a cero en norma o fuertemente.

- 36. Sea X un espacio de Banach con cualquiera de las dos normas $\|\cdot\|_1$, $\|\cdot\|_2$. Si $\|x_n\|_1 \to 0$ implica que $\|x_n\|_2 \to 0$, entonces las normas son equivalentes.
 - DEFINICIÓN: Sea E, F dos espacios de Banach, $T: D(T) \subset E \to F$ un operador lineal no acotado (donde D(T) denota el dominio de T). Decimos que T es cerrado si $x_n \in D(T), x_n \to x$ y $T(x_n) \to y$, implican que $x \in D(T)$ y T(x) = y.
- 37. a) T es cerrado si y sólo si $G(T) = \{(x, T(x)) : x \in D(T)\}$ es cerrado en $E \times F$.
 - b) T es cerrado si y sólo si D(T) resulta un espacio de Banach con la norma $||x||_T = ||x||_E + ||Tx||_F$.
 - c) Si T es cerrado y D(T) es cerrado, entonces $T \in \mathcal{L}(D(T), F)$.
 - d) Probar que el operador $T:D(T)=C^1[0,1]\subset C[0,1]\to C[0,1]$ dado por T(x)=x' es cerrado.