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In this article, we consider the problem of comparing several multivariate normal mean vectors when
the covariance matrices are unknown and arbitrary positive definite matrices. We propose a parametric
bootstrap (PB) approach and develop an approximation to the distribution of the PB pivotal quan-
tity for comparing two mean vectors. This approximate test is shown to be the same as the invariant
test given in [Krishnamoorthy and Yu, Modified Nel and Van der Merwe test for the multivariate Behrens–
Fisher problem, Stat. Probab. Lett. 66 (2004), pp. 161–169] for the multivariate Behrens–Fisher problem.
Furthermore, we compare the PB test with two existing invariant tests via Monte Carlo simulation. Our
simulation studies show that the PB test controls Type I error rates very satisfactorily, whereas other tests
are liberal especially when the number of means to be compared is moderate and/or sample sizes are small.
The tests are illustrated using an example.

Keywords: generalized p-value; generalized variable test; Johansen test; moment approximation;
modified Nel–Van der Merwe test; Type I error

1. Introduction

The problem of comparing the mean vectors of several multivariate normal populations is referred
to as the multivariate analysis of variance (MANOVA). If the population covariance matrices
are assumed to be equal, then there are some popular tests available to test the equality of the
mean vectors. The tests that are commonly used are Roy’s [1] largest root, the Lawley-Hotelling
trace [2,3], Wilks’ [4] likelihood ratio, and the Pillai–Bartlett trace [5,6]. When there are some
departures from the standard assumption, that is, unequal population covariance matrices, Olson
[7,8] recommended the Pillai–Bartlett trace because it was most robust to such violations. If only
two population means are to be compared assuming that covariance matrices are equal, then a
uniformly most powerful invariant test, known as the Hotelling T 2 test, is available. This test,
however, may become seriously biased when the assumption of equality of covariance matrices is
not satisfied, resulting in spurious decisions about the null hypothesis of equal means. Furthermore,
the assumption of variance homogeneity is very unlikely to be satisfied in practice.
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874 K. Krishnamoorthy and F. Lu

The problem of making inference about the difference between two normal mean vectors
without assuming equality of population covariance matrices is referred to as the multivariate
Behrens–Fisher problem, and it has been well addressed in the literature. The usual practice,
regarding the choice between the tests for comparing two normal mean vectors, is to first test
the equality of covariance matrices, and if the equality is tenable then use the Hotelling T 2

test, otherwise use one of the procedures for the multivariate Behrens–Fisher problem. Recently,
Krishnamoorthy and Xia [9] showed that this usual practice may lead to erroneous conclusions.
Another criticism of the conventional approach is the appropriateness of the usual variance ratio
test; this test is heavily dependent on the normality assumption, and sometimes rejection of
the null hypothesis of equality of variances may be attributed to non-normality rather than to
inequality of variances. Therefore, test procedures for comparing mean vectors without imposing
any assumption on covariance matrices are warranted. Many tests for the multivariate Behrens–
Fisher problem have been proposed. We refer to the following tests in the literature: Bennett’s [10],
Brown and Forsythe [11], James’ [12],Yao’s [13], Johansen’s [14], Nel and Van der Merwe’s [15],
and Kim’s [16] tests. Christensen and Rencher [17] compared seven tests and recommended
Kim’s test. However, Krishnamoorthy and Yu [18] noted that Kim’s test is not non-singular
invariant, and recently Park and Sinha [19] pointed out that Kim’s test is in general conservative.
Recent comparison studies by Krishnamoorthy and Yu [18], Hirokazu and Ke-Hai [20], Park
and Sinha [19], and Belloni and Didier [21] indicate that the modified Nel and Van der Merwe’s
(MNV) test proposed in Krishnamoorthy andYu [18] is comparable to, or better than, other affine
invariant tests. We will see in the sequel that this MNV test is a special case of the parametric
bootstrap (PB) test that we propose for the MANOVA problem.

If the covariance matrices are unknown and arbitrary, then the problem of testing equality of
the mean vectors is more complex, and only approximate solutions are available. James [12] and
Johansen [14] proposed multivariate tests for the situation in which the covariance matrices could
be unequal. James’ [12] tests, which include a first-order and a second-order approximation to the
null distribution, are an extension of his series solution to the univariate Behrens–Fisher problem.
Johansen [14] generalized Welch’s univariate approximate degrees of freedom solution [22,23] to
the present problem of comparing several normal mean vectors.All the proposed tests are based on
a natural invariant test statistic but used different approaches to approximate its null distribution.
Gamage, Mathew, andWeerahandi [24] used the generalized variable (GV) approach that was used
to solve the multivariate Behrens–Fisher problem. Tang and Algina [25] compared James’ first-
and second-order tests, Johansen’s test, and the Pillai–Bartlett trace and concluded that none of
them is satisfactory for all sample size and parameter configurations. Overall, they recommended
the James second-order test followed by the Johansen test. Our preliminary study showed that
James’ second-order test is computationally very involved and offered little improvement over the
Johansen test. In particular, the second-order test is difficult to apply when the number of means
to be compared is four or more.

In this article, we propose a PB approach for comparing k normal mean vectors when the
covariance matrices are unknown and arbitrary positive definite. The PB solution is an extension
of our solution to the univariate case [26]. For the univariate case, we found via simulation studies
that the PB test was very satisfactory for all sample size and parameter configurations. Indeed,
the PB test is the only test that controls Type I error rates when k is moderate or large and the
sample sizes are as small as three; other tests, including James’ second-order test have inflated
Type I error rates for values of k moderate to large and/or the sample sizes are small. In view of
our univariate results, it is of interest to develop a PB test for the multivariate case and study its
size properties.

This article is organized as follows. In the following section, we provide some preliminaries
and distributional results. In Section 3, we outline the Johansen test, the test based on the GV
approach [24] and derive a PB pivotal quantity. For the case of k = 2, we also provide a moment
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approximation to the distribution of the PB pivotal quantity. The test based on the moment approx-
imation is the same as the MNV test given in Krishnamoorthy andYu [18] which is, as mentioned
earlier, seems to be the best for the multivariate Behrens–Fisher problem. In Section 4, we compare
the Johansen test, the GV test, and the PB test with respect to Type I error rates. Our comparison
studies show that the PB test is the only test that performs very satisfactorily for all dimension,
sample size and parameter configurations considered. The tests are illustrated using an example
in Section 5, and some concluding remarks are given in Section 6.

2. Some preliminaries

Let Y i1, . . . ,Y ini
be a sample from a p-variate normal distribution with mean vector μi and

covariance matrix �i , i = 1, . . . , k. Assume that all the samples are independent. Let Ȳ i and Si

denote, respectively, the sample mean and sample covariance matrix based on the ith sample.
That is,

Ȳ i = 1

n

n∑
j=1

Yij and Si = 1

ni − 1

ni∑
j=1

(Yij − Ȳ i )(Yij − Ȳ i )
′, i = 1, . . . , k. (1)

Define �̃i = 1/ni�i and S̃i = 1/niSi . We note that Ȳ i’s and S̃i’s are mutually independent with

Ȳ i ∼ Np

(
μi ,

1

ni

�i

)
and S̃i ∼ Wp

(
ni − 1,

1

ni − 1
�̃i

)
, i = 1, . . . , k, (2)

where Wp(r, �) denotes the p-dimensional Wishart distribution with degrees of freedom (df) = r

and scale parameter matrix �.
The problem of interest here is to test

H0 : μ1 = · · · = μk vs. Ha : μi �= μj for some i �= j, (3)

based on the sample means and covariance matrices that are minimal sufficient statistics.
Let Ȳ = (Ȳ

′
1, . . . , Ȳ

′
k)

′, S̃ = diag(S̃1, . . . , S̃k), μ = (μ′
1, . . . ,μ

′
k)

′, and � = diag(�̃1, . . . , �̃k).
Under H0 given in Equation (3), let μ0 denote the common value of the μi’s. If �i’s are known,
then

μ̂0 =
(

k∑
i

�̃
−1
i

)−1 k∑
i=1

�̃
−1
i Ȳ i (4)

is the best linear unbiased estimator of μ0, and a natural test statistic is given by

T (Ȳ i; �̃i ) =
k∑

i=1

(Ȳ i − μ̂0)
′�̃

−1
i (Ȳ i − μ̂0)

=
k∑

i=1

Ȳ
′
i�̃

−1
i Ȳ i −

(
k∑

i=1

�̃
−1
i Ȳ i

)′ ( k∑
i=1

�̃
−1
i

)−1 (
k∑

i=1

�̃
−1
i Ȳ i

)
= Ȳ

′
�−1/2

[
Ikp − �−1/2J(J′�−1J)−1J′�−1/2

]
�−1/2Ȳ, (5)

where J = (Ip, . . . , Ip)′kp×p. Let B = [Ikp − �−1/2J(J′�−1J)−1J′�−1/2]. Notice that �−1/2Ȳ ∼
Nkp(�−1/2μ, Ikp) and B is an idempotent matrix with rank kp − p = p(k − 1), and so

T (Ȳ i; �̃i ) ∼ χ2
p(k−1)(μ

′�−1B�−1μ),
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876 K. Krishnamoorthy and F. Lu

where χ2
m(δ) denotes the non-central chi-square random variable with df = m and the non-

centrality parameter δ. We also observe that the noncentrality parameter μ′�−1B�−1μ =∑k
i=1(μi − μ0)

′�̃i (μi − μ0), and is equal to zero only when μ1 = · · · = μk .
If �̃i’s are unknown, then replacing them in Equation (5) by S̃i’s, we can get the test statistic

T (Ȳ i; S̃i ). Letting W i = S̃
−1
i , i = 1, . . . , k and W = ∑k

i=1 W i , and defining

μ̂∗
0 = W−1

k∑
i=1

W iȲ i ,

we can express

T (Ȳ i; S̃i ) =
k∑

i=1

(Ȳ i − μ̂∗
0)

′W i (Ȳ i − μ̂∗
0)

=
k∑

i=1

Ȳ
′
iW iȲ i −

(
k∑

i=1

W iȲ i

)′
W−1

(
k∑

i=1

W iȲ i

)
. (6)

3. The tests

We shall now describe three tests that use T (Ȳ i; S̃i ) = T (Ȳ i , . . . , Ȳk; S̃1, . . . , S̃k) in Equation (6)
as a test statistic.

3.1. Johansen’s test

Johansen’s [14] test is based on the test statistic

JOH = T (Ȳ1, . . . , Ȳk; S̃1, . . . , S̃k)

c
, (7)

where

c = p(k − 1) + 2A − 6A

p(k − 1) + 2
(8)

and

A =
k∑

i=1

tr(I −W−1W i )
2 + [

tr(I −W−1W i )
]2

2(ni − 1)
. (9)

Johansen showed that, under H0, JOH is approximately distributed as Ff1,f2 random variable,
where the dfs f1 = p(k − 1) and f2 = p(k − 1)[p(k − 1) + 2]/(3A).

Thus, the Johansen test rejects the null hypothesis in Equation (3) whenever JOH > Ff1,f2,1−α ,
where Fm,n;q denotes the qth quantile of an F distribution with dfs m and n.

3.2. The generalized variable test

Gamage et al. [24] proposed a test referred as the GV test, which is based on the concept of
generalized p-value introduced by Tsui and Weerahandi [27]. To describe the test, let (ȳi , s̃i ) be
an observed value of (Ȳ i , S̃i ), and let

R∗
i =

[
s̃−1/2
i �̃i s̃

−1/2
i

]−1/2 [
s̃−1/2
i S̃i s̃

−1/2
i

] [
s̃−1/2
i �̃i s̃

−1/2
i

]−1/2
, i = 1, . . . , k. (10)

For given s̃i’s, R∗
i ’s are independent, and as s̃−1/2

i S̃i s̃
−1/2
i ∼ Wp(ni − 1, s̃−1/2

i �̃i s̃
−1/2
i ), R∗

i ∼
Wp(ni − 1, 1/(ni − 1)Ip), i = 1, . . . , k.
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The generalized test variable is defined as

G = T (Ȳ1, . . . , Ȳk; �̃1, . . . , �̃k)

T
(
ȳ1, . . . , ȳk; s̃1/2

1 R∗
1
−1s̃1/2

1 , . . . , s̃1/2
k R∗

k
−1s̃1/2

k

) . (11)

It follows from Equation (5) that, under H0, T (Ȳ1, . . . , Ȳk; �̃1, . . . , �̃k) has a chi-square
distribution with df = p(k − 1). Furthermore, for a given (ȳ1, . . . , ȳk; s̃1, . . . , s̃k), the generalized
p-value is given by

Pχ2
p(k−1),R

∗
1,...,R

∗
k

(
χ2

p(k−1)

TN(ȳ1, . . . , ȳk; s̃1/2
1 R∗

1
−1s̃1/2

1 , . . . , s̃1/2
k R∗

k
−1s̃1/2

k )
> 1

)
. (12)

The GV test rejects the null hypothesis in Equation (3) whenever the generalized p-value in
Equation (12) is less than a given nominal level α. Notice that, for a given (ȳ1, . . . , ȳk; s̃1, . . . , s̃k),
the probability distribution in Equation (12) does not depend on any unknown parameters, so the
generalized p-value can be estimated using Monte Carlo simulation. An unappealing feature of
this test is that it is not non-singular invariant.

3.3. The parametric bootstrap (PB) test

The PB test involves sampling from the estimated models. That is, samples or sample statistics
are generated from parametric models with the parameters replaced by their estimates, and the
generated samples are used to approximate the null distribution of a test statistic. Recall that
under H0 : μ1 = · · · = μk all Ȳ i’s have the same mean. As the test statistic T in Equation (6) is
location invariant, without loss of generality, we can take this common mean to be the vector of
zeroes to find the null distribution of T . Using these facts, the PB pivotal quantity can be obtained
as follows. Let ȲBi ∼ Np(0, s̃i ) and S̃Bi

∼ Wp(ni − 1, (1/(ni − 1))s̃i ), where (s̃1, . . . , s̃k) is an
observed value of (S̃1, . . . , S̃k). In terms of these random quantities, we define the PB pivotal
quantity as

TB(ȲBi, S̃Bi) =
k∑

i=1

(ȲBi − μ̂∗
B)′S̃

−1
Bi (ȲBi − μ̂∗

B), (13)

where

μ̂∗
B =

(
k∑
i

S̃
−1
Bi

)−1 k∑
i=1

S̃
−1
Bi

ȲBi
, (14)

or equivalently,

TB(ȲBi, S̃Bi) =
k∑

i=1

Ȳ
′
Bi S̃

−1
Bi ȲBi −

(
k∑

i=1

Ȳ
′
Bi S̃

−1
Bi

) (
k∑

i=1

S̃
−1
Bi

)−1 (
k∑

i=1

S̃
−1
Bi ȲBi

)
. (15)

For an observed value T0 of T in Equation (6), the PB p-value is defined as

P(TB(ȲBi, S̃Bi) > T0), (16)

and the null hypothesis in Equation (3) is rejected whenever the above p-value is less than the
nominal level α. Notice that, for a given (s̃1, . . . , s̃k), the probability in Equation (16) does not
depend on any unknown parameters, and so it can be estimated using the Monte Carlo simulation
as described below.
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Let ti be the Cholesky factor of s̃i , so that s̃i = ti t′i , i = 1, . . . , k. Then ȲBi ∼ tiZi and S̃Bi ∼
tiV i t′i/(ni − 1), where Zi and V i are independent with Zi ∼ Np(0, Ip) and V i ∼ Wp(ni − 1, Ip).

In terms of these variables, we see that the PB pivotal quantity in Equation (15) is distributed as

TB(Zi ,V i ) =
k∑

i=1

fiZ′
iV

−1
i Zi −

(
k∑

i=1

fiZ′
iV

−1
i t−1

i

) (
k∑

i=1

fi(tiV i t′i )
−1

)−1 (
k∑

i=1

fi t
′−1
i V−1

i Zi

)
,

(17)
where fi = ni − 1, i = 1, . . . , k.

For a given dimension p, values of k, (n1, n2, . . . , nk), (ȳ1, . . . , ȳk), and (s̃1, . . . , s̃k), the PB
p-value can be estimated using the following steps.

(1) Compute the observed value T0 using Equation (6).
(2) Compute the Cholesky factor ti , so that tt′i = s̃i , i = 1, . . . , k.
(3) Generate Zi ∼ Np(0, Ip) and V i ∼ Wp(ni − 1, Ip), i = 1, . . . , k.
(4) Set ȲBi = tiZi and S̃Bi = (tiV i t′i )/(ni − 1), i = 1, . . . , k.

(5) Compute TB(Zi ,V i ) using Equation (17).
(6) Repeat the steps 3, 4, and 5 for a large number (say, M = 10,000) of times.

The proportion of times TB exceeds the observed value T0 is an estimate of the PB p-value defined
in Equation (16).

An approximation to the PB test: For k = 2, we can find an approximation to the distribution
of the PB pivotal quantity as follows. For k = 2, the TB in Equation (13) can be expressed as

TB = (ȲB1 − ȲB2)
′
(
S̃B1 + S̃B2

)−1
(ȲB1 − ȲB2).

Recall that ȲB1 − ȲB2 ∼ Np(0, s̃1 + s̃2) and S̃Bi
∼ Wp(ni − 1, (1/(ni − 1))s̃i ), and so

TB ∼ Z′(s̃1 + s̃2)
1/2(S̃B1 + S̃B2)

−1(s̃1 + s̃2)
1/2Z

= Z′(Q1 + Q2)
−1Z, (18)

where Qi = (s̃1 + s̃2)
−1/2S̃Bi(s̃1 + s̃2)

−1/2 ∼ Wp(ni − 1, (s̃1 + s̃2)
−1/2s̃i (s̃1 + s̃2)

−1/2/(ni − 1)),
i = 1, 2. As E(Q1 + Q2) = Ip, a reasonable approximation to the distribution of Q1 + Q2 could
be Wp(ν, (1/ν)Ip), where ν is to be determined by matching the expectation of tr(Q1 + Q2)

2 with
that of tr(Q2), where Q ∼ Wp(ν, (1/ν)Ip). By matching these expectations (see the Appendix),
we found

ν = p2 + p

1/(n1 − 1)

{
tr

[(
s̃1s̃−1

)2
]

+ [
tr

(
s̃1s̃−1

)]2
}

+ 1/(n2 − 1)

{
tr

[(
s̃2s̃−1

)2
]

+
[
tr

(
s̃2s̃−1

)]2
} ,

(19)
where s̃ = s̃1 + s̃2. Thus, we conclude that

Q1 + Q2 ∼ Wp

(
ν,

1

ν
Ip

)
approximately

and independently of Z in Equation (18). Note that

Z′(Q1 + Q2)
−1Z = Z′Z

Z′Z/Z′(Q1 + Q2)
−1Z

, (20)
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and Z′Z ∼ χ2
p independently of Z′Z/Z′(Q1 + Q2)

−1Z, which is distributed as χ2
ν−p+1/ν approx-

imately (see [28, p. 98], for the distributional results of the Hotelling T 2). Thus, it follows from
Equation (20) that

Z′(Q1 + Q2)
−1Z ∼ νp

ν − p + 1
Fp,ν−p+1 approximately.

We reject the null hypothesis in Equation (3) whenever an observed value of the test statistic in
Equation (6) is greater than or equal to νpFp,ν−p+1;1−α/(ν − p + 1). This approximate test is the
same as the invariant test given in Krishnamoorthy and Yu [18] who obtained it by modifying
the Nel–Van der Merwe [15] test. Furthermore, Krishnamoorthy and Yu showed that min{n1 −
1, n2 − 1} ≤ ν ≤ n1 + n2 − 2.

4. Monte Carlo studies

As all the tests are location invariant, we can take μ = (μ1, . . . ,μk)
′ to be vector of zeroes for

evaluating Type I error rates. For the case of comparing two group means using invariant tests, we
can assume �1 to be identity matrix, and �2 to be diag(λ1, . . . , λp), where λi’s are the eigenvalues
of �−1

1 �2. This is because there exists a non-singular matrix M such that �1 = MM′ and �2 =
M diag(λ1, . . . , λp)M′, and the test procedures are affine invariant. For the case of comparing more
than two population mean vectors, the parameter space cannot be simplified much, except that we
can take �1 = Ip, �2 = diag(λ1, . . . , λp), and other matrices are arbitrary positive definite. Even
though the GV test is not non-singular invariant, for simplicity and convenience we shall estimate
the sizes of the tests for the parameter space described above. To compute the sizes of the various
tests via Monte Carlo simulation, we used the IMSL subroutine RNMVN to generate p × 1
multivariate normal random vectors and the Applied Statistics Algorithm (AS 53) due to Smith
and Hocking [29] to generate Wishart random matrices. To estimate the sizes of the Johansen test,
we used simulation consisting of 10,000 runs. Notice that two nested ‘do loops’ are required to
estimate the sizes of the GV and PB tests; we used 2500 runs for outer ‘do loop’ (for generating
the observed statistics (ȳ1, . . . , ȳk) and (s̃1, . . . , s̃k)) and 5000 runs for ‘inner loop’ (for generating
standard normal random vectors and Wishart matrices).

Several articles compared different solutions for the multivariate Behrens–Fisher problem, that
is, for the case of k = 2. As noted in the introduction, the modified Nel–Van der Merwe test
proposed in Krishnamoorthy and Yu [18] seems to be one of the best invariant tests. As the
approximation to the PB test in the preceding section is the same as the modified Nel–Van der
Merwe test, comparison study for the case of k = 2 is not necessary, and we shall compare the
tests when the number of groups is three or more.

For the bivariate case, Type I error rates are estimated for k = 3 and 5, and are presented in
Table 1. We observe from this table that for smaller sample sizes, the Johansen test and the GV
test have inflated Type I error rates. The GV test appears to be liberal even when the sample sizes
are moderately large and not much different, and Johansen’s test appears to be satisfactory in
these cases. It is also clear that the PB test controls Type I error rates (close to the nominal level
0.05) and behaves like an exact test for all sample size and parameter configurations considered.
To compare the tests for k = 10, for convenience and simplicity, we take the covariance matrices

are of the form
(

1 ρ
ρ 1

)
, where −1 < ρ2 < 1. In this case, Johansen’s test appears to be satisfactory

only when the sample sizes are moderate (≥20) and not much different. The GV test appears to
be liberal even for moderate samples. In particular, Type I error rates of the GV test exceed 0.4
for small samples (see the case of n1 = . . . = n10 = 5). The behaviours of the GV test are similar
to those given in Krishnamoorthy et al. [26] for the univariate case.
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Table 1. Monte Carlo estimates of Type I error rates for comparing bivariate normal
mean vectors.

k = 3, p = 2, �1 = I2, �2 = diag(λ1, λ2), �3 =
(

1 ρ3
ρ3 1

)
(n1, n2, n3) (λ1, λ2, ρ3) Johansen GV PB

(7, 7, 7) (1,1,0) 0.057 0.054 0.052
(1,0.9,0.1) 0.054 0.052 0.041
(1,0.5,0.2) 0.058 0.047 0.049
(1,0.1,0.3) 0.068 0.061 0.056

(0.2,0.6,0.5) 0.067 0.073 0.048
(0.9,0.9,0.6) 0.055 0.056 0.044

(0.7,0.8,−0.2) 0.056 0.058 0.045

(7, 10, 20) (1,1,0) 0.060 0.095 0.052
(1,0.9,0.1) 0.059 0.072 0.056
(1,0.5,0.2) 0.062 0.089 0.054
(1,0.1,0.3) 0.070 0.086 0.056

(0.2,0.6,0.5) 0.067 0.078 0.056
(0.9,0.9,0.6) 0.061 0.096 0.055

(0.7,0.8,−0.2) 0.064 0.079 0.054

(10, 10, 10) (1,1,0) 0.052 0.055 0.043
(1,0.9,0.1) 0.052 0.050 0.040
(1,0.5,0.2) 0.052 0.054 0.039
(1,0.1,0.3) 0.058 0.053 0.054

(0.2,0.6,0.5) 0.056 0.058 0.049
(0.9,0.9,0.6) 0.050 0.046 0.054

(0.7,0.8,−0.2) 0.052 0.045 0.052

(10, 10, 40) (1,1,0) 0.055 0.100 0.058
(1,0.9,0.1) 0.055 0.090 0.049
(1,0.5,0.2) 0.054 0.093 0.043
(1,0.1,0.3) 0.055 0.096 0.052

(0.2,0.6,0.5) 0.054 0.110 0.052
(0.9,0.9,0.6) 0.055 0.111 0.057

(0.7,0.8,−0.2) 0.055 0.099 0.045

(25, 20, 20) (1,1,0) 0.049 0.043 0.041
(1,0.9,0.1) 0.050 0.059 0.049
(1,0.5,0.2) 0.049 0.048 0.051
(1,0.1,0.3) 0.052 0.054 0.052

(0.2,0.6,0.5) 0.053 0.054 0.051
(0.9,0.9,0.6) 0.050 0.059 0.052

(0.7,0.8,−0.2) 0.050 0.058 0.054

k = 5, p = 2, �1 = I2, �2 = diag(λ1, λ2), �i =
(

1 ρi

ρi 1

)
, i = 3, 4, 5

(n1, . . . , n5) (λ1, λ2, ρ3, ρ4, ρ5) Johansen GV PB

(7,7,7,7,7) (1, 1, 0.5, 0.5, 0.5) 0.071 0.104 0.050
(0.1, 0.1, 0.3, 0.3, 0.3) 0.072 0.114 0.050

(0.1, 0.7, 0, 0, 0) 0.072 0.113 0.048
(0.1, 0.9, 0.1, 0.4, 0.9) 0.074 0.120 0.048

(0.1, 0.3, −0.1, 0.1, 0.9) 0.076 0.126 0.051
(0.4, 0.4, 0.5, −0.3, 0.4, 0.3) 0.072 0.119 0.053

(0.9, 0.9, −0.4, 0.6, 0.9) 0.077 0.138 0.052

(12,12,12,12,12) (1, 1, 0.5, 0.5, 0.5) 0.055 0.075 0.050
(0.1, 0.1, 0.3, 0.3, 0.3) 0.056 0.078 0.053

(0.1, 0.7, 0, 0, 0) 0.056 0.084 0.052
(0.1, 0.9, 0.1, 0.4, 0.9) 0.056 0.084 0.051

(0.1, 0.3, −0.1, 0.1, 0.9) 0.057 0.083 0.050
(0.4, 0.4, 0.5, −0.3, 0.4, 0.3) 0.056 0.087 0.050

(0.9, 0.9, −0.4, 0.6, 0.9) 0.057 0.082 0.047

(Continued)
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Table 1. Continued.

(n1, n2, n3) (λ1, λ2, ρ3) Johansen GV PB

(20,20,20,20,20) (1, 1, 0.5, 0.5, 0.5) 0.053 0.054 0.054
(0.1, 0.1, 0.3, 0.3, 0.3) 0.051 0.057 0.051

(0.1, 0.7, 0, 0, 0) 0.052 0.065 0.052
(0.1, 0.9, 0.1, 0.4, 0.9) 0.052 0.061 0.047

(0.1, 0.3, −0.1, 0.1, 0.9) 0.052 0.062 0.051
(0.4, 0.4, 0.5, −0.3, 0.4, 0.3) 0.052 0.055 0.053

(0.9, 0.9, −0.4, 0.6, 0.9) 0.053 0.068 0.048

(15,20,10,32,7) (1, 1, 0.5, 0.5, 0.5) 0.068 0.114 0.047
(0.1, 0.1, 0.3, 0.3, 0.3) 0.068 0.139 0.049

(0.1, 0.7, 0, 0, 0) 0.068 0.099 0.054
(0.1, 0.9, 0.1, 0.4, 0.9) 0.063 0.117 0.052

(0.1, 0.3, −0.1, 0.1, 0.9) 0.062 0.111 0.051
(0.4, 0.4, 0.5, −0.3, 0.4, 0.3) 0.067 0.099 0.049

(0.9, 0.9, −0.4, 0.6, 0.9) 0.064 0.111 0.051

k = 10, p = 2, �i =
(

1 ρi

ρi 1

)
, i = 1, . . . , 10

(n1, . . . , n10) (ρ1, . . . , ρ10) Johansen GV PB

(5,5,5,5,5, (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 0.205 0.429 0.030
5,5,5,5,5) (0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9) 0.216 0.415 0.044

(0.1, 0.2, 0.1, 0.2, 0.9, 0.9, 0.9, −0.9, −0.8, 0.5) 0.217 0.453 0.047
(0.1, 0.1, 0.1, −0.2, −0.2, −0.2, 0, 0, 0, 0) 0.205 0.427 0.045

(0.1, 0.1, 0.1, 0.1, 0.1, 0.9, 0.9, 0.9, 0.9, 0.9) 0.219 0.426 0.047
(−0.1, 0.1, −0.4, 0.4, −0.5, 0.5, −0.7, 0.7, −0.9, 0.9) 0.221 0.415 0.046

(0.5, 0.5, 0.5, 0.1, 0.1, 0.1, 0.1, 0.9, 0.9, 0.9) 0.210 0.431 0.045

(10,10,10,10,10, (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 0.079 0.156 0.041
10,10,10,10,10) (0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9) 0.082 0.168 0.050

(0.1, 0.2, 0.1, 0.2, 0.9, 0.9, 0.9, −0.9, −0.8, 0.5) 0.078 0.170 0.051
(0.1, 0.1, 0.1, −0.2, −0.2, −0.2, 0, 0, 0, 0) 0.077 0.172 0.052

(0.1, 0.1, 0.1, 0.1, 0.1, 0.9, 0.9, 0.9, 0.9, 0.9) 0.079 0.166 0.047
(−0.1, 0.1, −0.4, 0.4, −0.5, 0.5, −0.7, 0.7, −0.9, 0.9) 0.076 0.167 0.048

(0.5, 0.5, 0.5, 0.1, 0.1, 0.1, 0.1, 0.9, 0.9, 0.9) 0.079 0.171 0.051

(10,7,12,7,11, (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 0.096 0.218 0.049
10,8,12,7,15) (0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9) 0.098 0.209 0.051

(0.1, 0.2, 0.1, 0.2, 0.9, 0.9, 0.9, −0.9, −0.8, 0.5) 0.096 0.215 0.048
(0.1, 0.1, 0.1, −0.2, −0.2, −0.2, 0, 0, 0, 0) 0.093 0.198 0.051

(0.1, 0.1, 0.1, 0.1, 0.1, 0.9, 0.9, 0.9, 0.9, 0.9) 0.094 0.212 0.050
(−0.1, 0.1, −0.4, 0.4, −0.5, 0.5, −0.7, 0.7, −0.9, 0.9) 0.092 0.208 0.047

(0.5, 0.5, 0.5, 0.1, 0.1, 0.1, 0.1, 0.9, 0.9, 0.9) 0.095 0.218 0.051

(10,10,10,5,5, (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 0.151 0.288 0.055
5,20,20,20,20) (0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9) 0.155 0.261 0.056

(0.1, 0.2, 0.1, 0.2, 0.9, 0.9, 0.9, −0.9, −0.8, 0.5) 0.154 0.287 0.061
(0.1, 0.1, 0.1, −0.2, −0.2, −0.2, 0, 0, 0, 0) 0.147 0.277 0.060

(0.1, 0.1, 0.1, 0.1, 0.1, 0.9, 0.9, 0.9, 0.9, 0.9) 0.150 0.291 0.057
(−0.1, 0.1, −0.4, 0.4, −0.5, 0.5, −0.7, 0.7, −0.9, 0.9) 0.170 0.256 0.058

(0.5, 0.5, 0.5, 0.1, 0.1, 0.1, 0.1, 0.9, 0.9, 0.9) 0.161 0.281 0.054

(25,23,20,27,21, (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 0.052 0.082 0.051
25,26,22,20,25) (0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9) 0.055 0.078 0.048

(0.1, 0.2, 0.1, 0.2, 0.9, 0.9, 0.9, −0.9, −0.8, 0.5) 0.049 0.102 0.051
(0.1, 0.1, 0.1, −0.2, −0.2, −0.2, 0, 0, 0, 0) 0.057 0.107 0.050

(0.1, 0.1, 0.1, 0.1, 0.1, 0.9, 0.9, 0.9, 0.9, 0.9) 0.056 0.081 0.047
(−0.1, 0.1, −0.4, 0.4, −0.5, 0.5, −0.7, 0.7, −0.9, 0.9) 0.056 0.087 0.048

(0.5, 0.5, 0.5, 0.1, 0.1, 0.1, 0.1, 0.9, 0.9, 0.9) 0.051 0.101 0.052
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Table 2. Monte Carlo estimates of Type I error rates for comparing trivariate normal mean vectors.

k = 3, p = 3 �1 = I3, �2 = diag(λ1, λ2, λ3), �3 =
⎛⎝1 ρ ρ

ρ 1 ρ

ρ ρ 1

⎞⎠
(n1, n2, n3) (λ1, λ2, λ3, ρ) Johansen GV PB

(7,7,7) (1,1,1,0) 0.079 0.077 0.039
(1,1,0.1,0.1) 0.090 0.081 0.042

(1,0.1,0.1,0.5) 0.105 0.095 0.049
(0.2,0.6,0.9,−0.3) 0.088 0.085 0.047

(0.6,0.6,0.6,0) 0.084 0.074 0.045
(0.3,0.9,0.1,−0.1) 0.100 0.082 0.045
(0.8,0.5,0.5,0.1) 0.085 0.080 0.047

(7,10,20) (1,1,1,0) 0.080 0.111 0.054
(1,1,0.1,0.1) 0.091 0.112 0.057

(1,0.1,0.1,0.5) 0.110 0.118 0.062
(0.2,0.6,0.9,−0.3) 0.093 0.113 0.060

(0.6,0.6,0.6,0) 0.086 0.107 0.054
(0.3,0.9,0.1,−0.1) 0.099 0.111 0.052
(0.8,0.5,0.5,0.1) 0.088 0.116 0.057

(10,10,10) (1,1,1,0) 0.057 0.063 0.045
(1,1,0.1,0.1) 0.063 0.069 0.058

(1,0.1,0.1,0.5) 0.069 0.069 0.052
(0.2,0.6,0.9,−0.3) 0.061 0.070 0.055

(0.6,0.6,0.6,0) 0.060 0.066 0.052
(0.3,0.9,0.1,−0.1) 0.067 0.078 0.057
(0.8,0.5,0.5,0.1) 0.062 0.071 0.050

(10,10,40) (1,1,1,0) 0.063 0.131 0.060
(1,1,0.1,0.1) 0.063 0.146 0.056

(1,0.1,0.1,0.5) 0.065 0.132 0.051
(0.2,0.6,0.9,−0.3) 0.064 0.128 0.059

(0.6,0.6,0.6,0) 0.062 0.137 0.051
(0.3,0.9,0.1,−0.1) 0.065 0.138 0.056
(0.8,0.5,0.5,0.1) 0.063 0.146 0.058

(25,20,20) (1,1,1,0) 0.050 0.057 0.056
(1,1,0.1,0.1) 0.053 0.054 0.052

(1,0.1,0.1,0.5) 0.055 0.063 0.047
(0.2,0.6,0.9,−0.3) 0.052 0.057 0.054

(0.6,0.6,0.6,0) 0.051 0.045 0.052
(0.3,0.9,0.1,−0.1) 0.054 0.053 0.059
(0.8,0.5,0.5,0.1) 0.051 0.042 0.048

k = 5, p = 3, �1 = I3, �2 = diag(λ1, λ2, λ3), �i =
⎛⎝ 1 ρi ρi

ρi 1 ρi

ρi ρi 1

⎞⎠ , i = 3, 4, 5

(n1, . . . , n5) (λ1, λ2, λ3, ρ3, ρ4, ρ5) Johansen GV PB

(7,7,7,7,7) (1, 1, 1, 0.5, 0.5, 0.5) 0.112 0.208 0.047
(0.1, 0.1, 0.1, 0.3, 0.3, 0.3) 0.178 0.253 0.051

(0.1, 0.4, 0.7, 0, 0, 0) 0.148 0.227 0.049
(0.1, 0.3, 0.9, 0.1, 0.4, 0.9) 0.143 0.232 0.051

(0.1, 0.2, 0.3, −0.1, 0.1, 0.9) 0.160 0.235 0.048
(0.4, 0.4, 0.5, −0.3, 0.4, 0.3) 0.131 0.206 0.051
(0.9, 0.9, 0.9, −0.4, 0.6, 0.9) 0.130 0.248 0.050

(12,12,12,12,12) (1, 1, 1, 0.5, 0.5, 0.5) 0.073 0.133 0.047
(0.1, 0.1, 0.1, 0.3, 0.3, 0.3) 0.083 0.142 0.051

(0.1, 0.4, 0.7, 0, 0, 0) 0.074 0.128 0.049
(0.1, 0.3, 0.9, 0.1, 0.4, 0.9) 0.080 0.128 0.051

(0.1, 0.2, 0.3, −0.1, 0.1, 0.9) 0.082 0.146 0.048
(0.4, 0.4, 0.5, −0.3, 0.4, 0.3) 0.069 0.122 0.051
(0.9, 0.9, 0.9, −0.4, 0.6, 0.9) 0.073 0.139 0.050

(Continued)
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Table 2. Continued.

(n1, n2, n3) (λ1, λ2, λ3, ρ) Johansen GV PB

(20,20,20,20,20) (1, 1, 1, 0.5, 0.5, 0.5) 0.061 0.086 0.047
(0.1, 0.1, 0.1, 0.3, 0.3, 0.3) 0.065 0.105 0.051

(0.1, 0.4, 0.7, 0, 0, 0) 0.065 0.078 0.049
(0.1, 0.3, 0.9, 0.1, 0.4, 0.9) 0.060 0.087 0.051

(0.1, 0.2, 0.3, −0.1, 0.1, 0.9) 0.058 0.084 0.048
(0.4, 0.4, 0.5, −0.3, 0.4, 0.3) 0.062 0.086 0.051
(0.9, 0.9, 0.9, −0.4, 0.6, 0.9) 0.066 0.093 0.050

(15,20,10,32,7) (1, 1, 1, 0.5, 0.5, 0.5) 0.092 0.158 0.047
(0.1, 0.1, 0.1, 0.3, 0.3, 0.3) 0.126 0.225 0.051

(0.1, 0.4, 0.7, 0, 0, 0) 0.116 0.178 0.049
(0.1, 0.3, 0.9, 0.1, 0.4, 0.9) 0.086 0.183 0.051

(0.1, 0.2, 0.3, −0.1, 0.1, 0.9) 0.101 0.183 0.048
(0.4, 0.4, 0.5, −0.3, 0.4, 0.3) 0.111 0.197 0.051
(0.9, 0.9, 0.9, −0.4, 0.6, 0.9) 0.076 0.189 0.050

We also observe from the first two sets of rows in Table 1 (the case of k = 10) that even for
smaller samples of equal size, the PB test controls Type I error rates within the nominal level,
whereas the other tests have inflated Type I error rates. When the sample sizes are very different
(see the fourth set of rows in Table 1, k = 10), the Johansen test and the GV test are still liberal
while the PB test appears to be slightly liberal. In general for a moderate k, the PB test is the only
test appears to be satisfactory.

For the case of p = 3, we evaluated the sizes of the tests for the number of groups k = 3 and 5.
Type I error rates are reported in Table 2. The tests exhibit similar performance as in the case
of p = 2. Specifically, the PB test is the only test that controls Type I error rates very close to
the nominal level. The Johansen test performs satisfactorily when the sample sizes are moderate
and close to each other. The GV test seems to be the worst among these three tests. To judge the
behaviours of the tests for higher dimension, we estimated the sizes for p = 10 and k = 3, and
reported them in Table 3. The tests exhibit similar behaviours as they did for the case of p = 3
and k = 3. It appears that Type-I error rates of the tests are affected by the number of means to
be compared, not by the dimension.

Overall, we see that the PB test is the only test that appears to be satisfactory for all the sample
size and parameter configurations, and the number of groups to be compared.

Table 3. Monte Carlo estimates of Type I error rates when p = 10.

(k = 3; �1 = I10, �2 = diag(λ1, . . . , λ10), �3 = diag(η1, . . . , η10))

(n1, n2, n3) (λ1, . . . , λ10) (η1, . . . , η10) Johansen GV PB

(15,15,15) (1,. . .,1) (1,. . .,1) 0.084 0.090 0.052
(1,. . .,1) (0.1,0.1,0.1,0.2,0.2,0.2,0.3,0.3,0.3,0.1) 0.078 0.085 0.044

(1,2,2,8,8,8,10,10,10,10) (10,10,10,10,2,3,6,6,10,10) 0.081 0.088 0.051
(1,1,1,3,3,3,9,9,9,20) (5,5,5,15,15,15,45,45,45,100) 0.077 0.081 0.055

(12,12,12,1,1,1,24,24,24,1) (1,1,1,0.1,0.1,0.1,2,2,24,21) 0.085 0.095 0.046

(25,35,50) (1,. . .,1) (1,. . .,1) 0.061 0.077 0.051
(1,. . .,1) (0.1,0.1,0.1,0.2,0.2,0.2,0.3,0.3,0.3,0.1) 0.066 0.081 0.049

(1,2,2,8,8,8,10,10,10,10) (10,10,10,10,2,3,6,6,10,10) 0.055 0.072 0.051
(1,1,1,3,3,3,9,9,9,20) (5,5,5,15,15,15,45,45,45,100) 0.067 0.071 0.046

(12,12,12,1,1,1,24,24,24,1) (1,1,1,0.1,0.1,0.1,2,2,24,21) 0.066 0.069 0.047
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5. Illustrative examples

We shall illustrate the three tests using the data sets originally discussed by Thomson and Randall-
Maciver [30], so that we can compare our results and understand the behaviour of these three
tests described in Section 3 for comparing several groups. There are five samples of 30 skulls
from each of the early predynastic period (circa 4000 BC), the late predynastic period (circa
3300 BC), the 12th and 13th dynasties (circa 1850 BC), the Ptolemaic period (circa 200 BC),
and the Roman period (circa AD 150). Four measurements are available on each skull, namely,
X1 = maximum breadth, X2 = borborygmatic height, X3 = dentoalveolar length, and X4 = nasal
height (all in mm). The measurements made on male Egyptian skulls from the area of Thebes
are available at Statlib (http://lib.stat.cmu.edu/DASL/Stories/EgyptianSkullDevelopment.html),
and they do provide evidence of multivariate normality. In order to see the performance of these
four tests in the case of small sample size and for ease of presenting the numerical results, we
only take the first 15 skull observations, and consider only the first three samples (we discard the
sample from the Roman period). The purpose of this study is to find whether the differences in
the sample means for the variables reflect gradual changes with time. In our present set-up, we
have n1 = · · · = n4 = 15, the number of groups is k = 4, and the number of variables is p = 4.

The null hypothesis of interest is whether the mean vectors for the four variables are the same
across the four periods. The hypothesis may be written as

H0 :

⎛⎜⎜⎝
μ11

μ12

μ13

μ14

⎞⎟⎟⎠ =

⎛⎜⎜⎝
μ21

μ22

μ23

μ24

⎞⎟⎟⎠ =

⎛⎜⎜⎝
μ31

μ32

μ33

μ34

⎞⎟⎟⎠ =

⎛⎜⎜⎝
μ41

μ42

μ43

μ44

⎞⎟⎟⎠ vs. H0 is not true.

Based on the sample data, we computed the summary statistics for the four groups as

(
Ȳ1, . . . , Ȳ4

) =

⎛⎜⎜⎝
131.40 133.07 134.27 136.33
134.07 134.00 135.47 132.47

97.73 99.13 96.60 94.87
50.27 49.93 49.67 51.87

⎞⎟⎟⎠ .

The matrices

W1 =

⎛⎜⎜⎝
0.862 −0.173 −0.210 −1.174

− 0.604 0.138 0.076
− − 0.493 0.308
− − − 3.508

⎞⎟⎟⎠,

W2 =

⎛⎜⎜⎝
0.573 0.205 −0.327 −0.110

− 0.953 −0.146 −0.922
− − 2.223 −0.868
− − − 2.717

⎞⎟⎟⎠,

W3 =

⎛⎜⎜⎝
0.925 0.091 0.070 0.015

− 0.610 0.025 −0.193
− − 0.625 −0.227
− − − 1.587

⎞⎟⎟⎠,

W4 =

⎛⎜⎜⎝
1.409 0.085 0.121 −0.430

− 0.964 −0.095 −0.666
− − 0.640 −0.362
− − − 2.174

⎞⎟⎟⎠,
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and

W−1 =

⎛⎜⎜⎝
0.294 0.013 0.042 0.057

− 0.355 0.027 0.066
− − 0.268 0.043
− − − 0.126

⎞⎟⎟⎠ .

Using these matrices, we computed

μ̂∗
0 = W−1

k∑
i=1

W iȲ i =

⎛⎜⎜⎝
134.09
134.10
98.349
50.832

⎞⎟⎟⎠ .

Finally, the value of the test statistic is computed as

T0 =
4∑

i=1

(Ȳ i − μ̂∗
0)

′W i (Ȳ i − μ̂∗
0) = 32.90.

5.1. Johansen’s test

Using Equations (9) and (8), respectively, we can get A = 1.6227 and c = 14.5500. The observed
value of Johansen’s test statistic is

JOH = T (Ȳ1, . . . , Ȳk; S̃1, . . . , S̃k)

c
= 32.90

14.55
= 2.2612.

Taking α to be 0.05, we have

Ff1,f2;0.05 = 2.0454

with f1 = p(k − 1) = 12 and f2 = p(k − 1)[p(k − 1) + 2]/(3A) = 34.51 degrees of freedom.
Furthermore, the p-value is computed as P(F12,34.51 > 2.2612) = 0.0304. Thus, on the basis of
the F critical value (or the p-value), the null hypothesis of equal mean vector is rejected at the
nominal level 0.05.

5.2. Generalized variable test

To apply this test, we first computed s̃i and mean vectors ȳi , i = 1, . . . , 4, and then generated
100,000 values of G variable in Equation (11). We estimated the p value by the proportion of these
100,000 generated values that are greater than or equal to 1, and is given by 0.0009. Obviously, we
reject H0. That is, the Egyptian skulls experienced a significant change over those four periods.

5.3. Parametric bootstrap test

To compute PB p-value, we computed the Cholesky factors ti’s (so that ti t′i = s̃i , i = 1, . . . , 4)

as

t1 =

⎛⎜⎜⎝
1.542 0 0 0
0.320 1.330 0 0
0.264 −0.374 1.465 0
0.486 0.004 −0.129 0.534

⎞⎟⎟⎠, t2 =

⎛⎜⎜⎝
1.433 0 0 0

−0.226 1.361 0 0
0.216 0.309 0.717 0
0.050 0.561 0.229 0.607

⎞⎟⎟⎠,
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t3 =

⎛⎜⎜⎝
1.053 0 0 0

−0.167 1.305 0 0
−0.128 0.005 1.299 0
−0.048 0.159 0.185 0.794

⎞⎟⎟⎠, t4 =

⎛⎜⎜⎝
0.871 0 0 0
0.036 1.206 0 0

−0.062 0.428 1.314 0
0.173 0.441 0.219 0.678

⎞⎟⎟⎠.

Using the ti’s and the steps of Section 3.3, the PB p-value was obtained (using a simula-
tion consisting of 10,000 runs) as 0.0410. Therefore, we reject H0, the same conclusion as
previous tests.

Finally, we also note that the above results of the tests are in agreement with our size studies
in Section 4. More specifically, we observed in Section 4 that the GV test is more liberal than the
Johansen test followed by the PB test, and this is reflected by the magnitude of the p-values of
the tests.

6. Concluding remarks

We extended the univariate results of Krishnamoorthy et al. [26] to the MANOVA, and showed
that the available approximate methods are not satisfactory, and the GV test, that was developed
recently, performed poorly with respect to Type I error rates. The proposed PB test is the only test
that performs satisfactorily for all the situations considered. Furthermore, the PB test is as simple
as other tests to use in applications. For the special case of comparing two mean vectors, we
developed an approximate test that is the same as the existing satisfactory test in Krishnamoorthy
and Yu [18]. It is plausible that the PB approach can be used to obtain analytical approximate
test for a general case of comparing several normal mean vectors. We used the moment matching
method to find an approximate test for the multivariate Behrens–Fisher problem. At present, we
are unable to extend this moment matching method to get an approximate test for the general
case, and plan to investigate this problem in the future.
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Appendix

To evaluate Etr(Q1 + Q2)
2 and Etr(Q)2, we will use the result by Haff [31] that, for V ∼ Wp(m, �),

E(V2) = m(m + 1)�2 + m tr(�)�. (A.1)
Recall that Q ∼ Wp(ν, (1/ν)Ip), and so

E(Q2) = ν(ν + 1)Ip

ν2
+ νtr(Ip)Ip

ν2
.

Thus

trE(Q2) = p + p + p2

ν
. (A.2)

Let C1 = (s̃1 + s̃2)
−1/2 s̃1(s̃1 + s̃2)

−1/2 and C2 = (s̃1 + s̃2)
−1/2 s̃2(s̃1 + s̃2)

−1/2 so that C1 + C2 = Ip .
As Q1 ∼ Wp(n1 − 1, C1/(n1 − 1)) independently of Q2 ∼ Wp(n2 − 1, C2/(n2 − 1)), we have

tr E(Q1Q2) = tr[E(Q1)E(Q2)] = tr(C1C2)

and using Equation (A.1), we get

trE(Q2
i ) = tr(C2

i ) + tr(C2
i ) + [tr(Ci )]2

ni − 1
, i = 1, 2.

Using the result that for real symmetric matrices A and B, tr(AB) = tr(BA), and the fact that Q1 and Q2 are independent,
we get

trE(Q1 + Q2)
2 = trE(Q1)

2 + trE(Q2)
2 + 2 tr[E(Q1)E(Q2)]

= tr(C2
1) + [tr(C1)]2

n1 − 1
+ tr(C2

2) + [tr(C2)]2

n2 − 1

+ tr(C2
1) + tr(C2

2) + 2 tr(C1C2). (A.3)

Finally, noticing that tr(C2
1) + tr(C2

2) + 2 tr(C1C2) = tr(C1 + C2)
2 = tr(Ip) = p, we see that Equations (A.2) equals to

(A.3) when

ν = p2 + p

1/(n1 − 1)
{
tr(C2

1) + [tr(C1)]2
} + 1/(n2 − 1)

{
tr(C2

2) + [tr(C2)]2
} .

Replacing Ci by (s̃1 + s̃2)
−1/2 s̃i (s̃1 + s̃2)

−1/2, i = 1, 2, and using the relation tr(AB) = tr(BA), we get the expression
for ν in Equation (19).
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